MorvanZhou / Reinforcement-learning-with-tensorflow
Simple Reinforcement learning tutorials, 莫烦Python 中文AI教学
AI Architecture Analysis
This repository is indexed by RepoMind. By analyzing MorvanZhou/Reinforcement-learning-with-tensorflow in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.
Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.
Repository Summary (README)
PreviewReinforcement Learning Methods and Tutorials
In these tutorials for reinforcement learning, it covers from the basic RL algorithms to advanced algorithms developed recent years.
If you speak Chinese, visit 莫烦 Python or my Youtube channel for more.
As many requests about making these tutorials available in English, please find them in this playlist: (https://www.youtube.com/playlist?list=PLXO45tsB95cIplu-fLMpUEEZTwrDNh6Ba)
Table of Contents
- Tutorials
- Simple entry example
- Q-learning
- Sarsa
- Sarsa(lambda)
- Deep Q Network (DQN)
- Using OpenAI Gym
- Double DQN
- DQN with Prioitized Experience Replay
- Dueling DQN
- Policy Gradients
- Actor-Critic
- Deep Deterministic Policy Gradient (DDPG)
- A3C
- Dyna-Q
- Proximal Policy Optimization (PPO)
- Curiosity Model, Random Network Distillation (RND)
- Some of my experiments
Some RL Networks
Deep Q Network
<a href="contents/5_Deep_Q_Network"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/4-3-2.png"> </a>Double DQN
<a href="contents/5.1_Double_DQN"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/4-5-3.png"> </a>Dueling DQN
<a href="contents/5.3_Dueling_DQN"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/4-7-4.png"> </a>Actor Critic
<a href="contents/8_Actor_Critic_Advantage"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/6-1-1.png"> </a>Deep Deterministic Policy Gradient
<a href="contents/9_Deep_Deterministic_Policy_Gradient_DDPG"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/6-2-2.png"> </a>A3C
<a href="contents/10_A3C"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/6-3-2.png"> </a>Proximal Policy Optimization (PPO)
<a href="contents/12_Proximal_Policy_Optimization"> <img class="course-image" src="https://mofanpy.com/static/results/reinforcement-learning/6-4-3.png"> </a>Curiosity Model
<a href="/contents/Curiosity_Model"> <img class="course-image" src="/contents/Curiosity_Model/Curiosity.png"> </a>Donation
If this does help you, please consider donating to support me for better tutorials. Any contribution is greatly appreciated!
<div > <a href="https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=morvanzhou%40gmail%2ecom&lc=C2&item_name=MorvanPython&currency_code=AUD&bn=PP%2dDonationsBF%3abtn_donateCC_LG%2egif%3aNonHosted"> <img style="border-radius: 20px; box-shadow: 0px 0px 10px 1px #888888;" src="https://www.paypalobjects.com/webstatic/en_US/i/btn/png/silver-pill-paypal-44px.png" alt="Paypal" height="auto" ></a> </div> <div> <a href="https://www.patreon.com/morvan"> <img src="https://mofanpy.com/static/img/support/patreon.jpg" alt="Patreon" height=120></a> </div>