back to home

OpenBMB / MiniCPM-o

A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone

23,865 stars
1,839 forks
84 issues
PythonVueJavaScript

AI Architecture Analysis

This repository is indexed by RepoMind. By analyzing OpenBMB/MiniCPM-o in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.

Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.

Embed this Badge

Showcase RepoMind's analysis directly in your repository's README.

[![Analyzed by RepoMind](https://img.shields.io/badge/Analyzed%20by-RepoMind-4F46E5?style=for-the-badge)](https://repomind-ai.vercel.app/repo/OpenBMB/MiniCPM-o)
Preview:Analyzed by RepoMind

Repository Summary (README)

Preview
<div align="center">

<img src="./assets/minicpm_v_and_minicpm_o_title.png" width="500em" ></img>

A Gemini 2.5 Flash Level MLLM for Vision, Speech, and Full-Duplex Multimodal Live Streaming on Your Phone

<strong>中文 | English</strong>

<span style="display: inline-flex; align-items: center; margin-right: 2px;"> <img src="./assets/wechat.png" alt="WeChat" style="margin-right: 4px;"> <a href="docs/wechat.md" target="_blank"> WeChat</a> &nbsp;| </span> &nbsp; <span style="display: inline-flex; align-items: center; margin-left: -8px;"> <img src="./assets/discord.png" alt="Discord" style="margin-right: 4px;"> <a href="https://discord.gg/N2RnxGdJ" target="_blank"> Discord</a> &nbsp; </span> <p align="center"> MiniCPM-o 4.5 <a href="https://huggingface.co/openbmb/MiniCPM-o-4_5">🤗</a> <a href="https://minicpm-omni.openbmb.cn/">📞</a> <a href="http://211.93.21.133:18121/">🤖</a> | MiniCPM-V 4.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-4">🤗</a> | <a href="https://github.com/OpenSQZ/MiniCPM-V-Cookbook">🍳 Cookbook</a> | <a href="https://openbmb.github.io/minicpm-o-4_5/">Audio Casebook</a> | <a href="https://openbmb.github.io/minicpm-o-4_5-omni/">Omni Full-Duplex Casebook</a> </p> </div>

MiniCPM-o is the latest series of on-device multimodal LLMs (MLLMs) ungraded from MiniCPM-V. The models can now take image, video, text, and audio as inputs and provide high-quality text and speech outputs in an end-to-end fashion. The model series is designed for strong performance and efficient deployment. The most notable models in the series currently include:

  • MiniCPM-o 4.5: 🔥🔥🔥 The latest and most capable model in the series. With a total of 9B parameters, this end-to-end model approaches Gemini 2.5 Flash in vision, speech, and full-duplex multimodal live streaming, making it one of the most versatile and performant models in the open-source community. The new full-duplex multimodal live streaming capability means that the output streams (speech and text), and the real-time input streams (video and audio) do not block each other. This enables MiniCPM-o 4.5 to see, listen, and speak simultaneously in a real-time omnimodal conversation, and perform proactive interactions such as proactive reminding. The improved voice mode supports bilingual real-time speech conversation in a more natural, expressive, and stable way, and also allows for voice cloning. It also advances MiniCPM-V's visual capabilities such as strong OCR capability, trustworthy behavior and multilingual support, etc. We also rollout a high-performing llama.cpp-omni inference framework together with a WebRTC Demo, to bring this full-duplex multimodal live streaming experience available on local devices such as Macs.

  • MiniCPM-V 4.0: ⭐️⭐️⭐️ An efficient model in the MiniCPM-V series. With a total of 4B parameters, the model surpasses GPT-4.1-mini-20250414 in image understanding on the OpenCompass evaluation. With its small parameter size and efficient architecture, MiniCPM-V 4.0 is an ideal choice for on-device deployment on the phone.

News <!-- omit in toc -->

📌 Pinned

[!NOTE] [2026.02.06] 🥳 🥳 🥳 MiniCPM-o 4.5 Local & Ready-to-Run! Experience full-duplex communication directly on your own Mac using our new official Docker image. Try it now!

  • [2026.02.05] 📢📢📢 We note the web demo may experience latency issues due to network conditions. We are working actively to provide a Docker image for local deployment of the real-time interactive Demo as soon as possible. Please stay tuned!

  • [2026.02.03] 🔥🔥🔥 We open-source MiniCPM-o 4.5, which matches Gemini 2.5 Flash on vision and speech, and supports full-duplex multimodal live streaming. Try it now!

  • [2025.09.18] 📢📢📢 MiniCPM-V 4.5 technical report is now released! See here.

  • [2025.08.26] 🔥🔥🔥 We open-source MiniCPM-V 4.5, which outperforms GPT-4o-latest, Gemini-2.0 Pro, and Qwen2.5-VL 72B. It advances popular capabilities of MiniCPM-V, and brings useful new features. Try it now!

  • [2025.08.01] ⭐️⭐️⭐️ We open-sourced the MiniCPM-V & o Cookbook! It provides comprehensive guides for diverse user scenarios, paired with our new Docs Site for smoother onboarding.

  • [2025.03.01] 🚀🚀🚀 RLAIF-V, the alignment technique of MiniCPM-o, is accepted by CVPR 2025 Highlights!The code, dataset, paper are open-sourced!

  • [2025.01.24] 📢📢📢 MiniCPM-o 2.6 technical report is released! See here.

  • [2025.01.19] ⭐️⭐️⭐️ MiniCPM-o tops GitHub Trending and reaches top-2 on Hugging Face Trending!

  • [2024.05.23] 🔥🔥🔥 MiniCPM-V tops GitHub Trending and Hugging Face Trending! Our demo, recommended by Hugging Face Gradio’s official account, is available here. Come and try it out!

<br> <details> <summary>Click to view more news.</summary>
  • [2025.09.01] ⭐️⭐️⭐️ MiniCPM-V 4.5 has been officially supported by llama.cpp, vLLM, and LLaMA-Factory. You are welcome to use it directly through these official channels! Support for additional frameworks such as Ollama and SGLang is actively in progress.

  • [2025.08.02] 🚀🚀🚀 We open-source MiniCPM-V 4.0, which outperforms GPT-4.1-mini-20250414 in image understanding. It advances popular features of MiniCPM-V 2.6, and largely improves the efficiency. We also open-source the iOS App on iPhone and iPad. Try it now!

  • [2025.06.20] ⭐️⭐️⭐️ Our official Ollama repository is released. Try our latest models with one click

  • [2025.01.23] 💡💡💡 MiniCPM-o 2.6 is now supported by Align-Anything, a framework by PKU-Alignment Team for aligning any-to-any modality large models with human intentions. It supports DPO and SFT fine-tuning on both vision and audio. Try it now!

  • [2025.01.19] 📢 ATTENTION! We are currently working on merging MiniCPM-o 2.6 into the official repositories of llama.cpp, Ollama, and vllm. Until the merge is complete, please USE OUR LOCAL FORKS of llama.cpp, Ollama, and vllm. Using the official repositories before the merge may lead to unexpected issues.

  • [2025.01.17] We have updated the usage of MiniCPM-o 2.6 int4 quantization version and resolved the model initialization error. Click here and try it now!

  • [2025.01.13] 🔥🔥🔥 We open-source MiniCPM-o 2.6, which matches GPT-4o-202405 on vision, speech and multimodal live streaming. It advances popular capabilities of MiniCPM-V 2.6, and supports various new fun features. Try it now!

  • [2024.08.15] We now also support multi-image SFT. For more details, please refer to the document.

  • [2024.08.14] MiniCPM-V 2.6 now also supports fine-tuning with the SWIFT framework!

  • [2024.08.17] 🚀🚀🚀 MiniCPM-V 2.6 is now fully supported by official llama.cpp! GGUF models of various sizes are available here.

  • [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by official llama.cpp! GGUF models of various sizes are available here.

  • [2024.08.06] 🔥🔥🔥 We open-source MiniCPM-V 2.6, which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now!

  • [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See here.

  • [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See here.

  • [2024.06.03] Now, you can run MiniCPM-Llama3-V 2.5 on multiple low VRAM GPUs(12 GB or 16 GB) by distributing the model's layers across multiple GPUs. For more details, check this link.

  • [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and Ollama! Please pull the latest code of our provided forks (llama.cpp, Ollama). GGUF models in various sizes are available here. MiniCPM-Llama3-V 2.5 series is not supported by the official repositories yet, and we are working hard to merge PRs. Please stay tuned!

  • [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics here.

  • [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it here!

  • [2024.05.24] We release the MiniCPM-Llama3-V 2.5 gguf, which supports llama.cpp inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!

  • [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmark evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click here to view more details.

  • [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide efficient inference and simple fine-tuning. Try it now!

  • [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click here to view more details.

  • [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at here!

  • [2024.04.17] MiniCPM-V-2.0 supports deploying WebUI Demo now!

  • [2024.04.15] MiniCPM-V-2.0 now also supports fine-tuning with the SWIFT framework!

  • [2024.04.12] We open-source MiniCPM-V 2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.

  • [2024.03.14] MiniCPM-V now supports fine-tuning with the SWIFT framework. Thanks to Jintao for the contribution!

  • [2024.03.01] MiniCPM-V can now be deployed on Mac!

  • [2024.02.01] We open-source MiniCPM-V and OmniLMM-12B, which support efficient end-side deployment and powerful multimodal capabilities correspondingly.

</details>

Contents <!-- omit in toc -->

MiniCPM-o 4.5

MiniCPM-o 4.5 is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip2, Whisper-medium, CosyVoice2, and Qwen3-8B with a total of 9B parameters. It exhibits a significant performance improvement, and introduces new features for full-duplex multimodal live streaming. Notable features of MiniCPM-o 4.5 include:

  • 🔥 Leading Visual Capability. MiniCPM-o 4.5 achieves an average score of 77.6 on OpenCompass, a comprehensive evaluation of 8 popular benchmarks. With only 9B parameters, it surpasses widely used proprietary models like GPT-4o, Gemini 2.0 Pro, and approaches Gemini 2.5 Flash for vision-language capabilities. It supports instruct and thinking modes in a single model, better covering efficiency and performance trade-offs in different user scenarios.

  • 🎙 Strong Speech Capability. MiniCPM-o 4.5 supports bilingual real-time speech conversation with configurable voices in English and Chinese. It features more natural, expressive and stable speech conversation. The model also allows for fun features such as voice cloning and role play via a simple reference audio clip, where the cloning performance surpasses strong TTS tools such as CosyVoice2.

  • 🎬 New Full-Duplex and Proactive Multimodal Live Streaming Capability. As a new feature, MiniCPM-o 4.5 can process real-time, continuous video and audio input streams simultaneously while generating concurrent text and speech output streams in an end-to-end fashion, without mutual blocking. This allows MiniCPM-o 4.5 to see, listen, and speak simultaneously, creating a fluid, real-time omnimodal conversation experience. Beyond reactive responses, the model can also perform proactive interaction, such as initiating reminders or comments based on its continuous understanding of the live scene.

  • 💪 Strong OCR Capability, Efficiency and Others. Advancing popular visual capabilities from MiniCPM-V series, MiniCPM-o 4.5 can process high-resolution images (up to 1.8 million pixels) and high-FPS videos (up to 10fps) in any aspect ratio efficiently. It achieves state-of-the-art performance for end-to-end English document parsing on OmniDocBench, outperforming proprietary models such as Gemini-3 Flash and GPT-5, and specialized tools such as DeepSeek-OCR 2. It also features trustworthy behaviors, matching Gemini 2.5 Flash on MMHal-Bench, and supports multilingual capabilities on more than 30 languages.

  • 💫 Easy Usage. MiniCPM-o 4.5 can be easily used in various ways: (1) llama.cpp and Ollama support for efficient CPU inference on local devices, (2) int4 and GGUF format quantized models in 16 sizes, (3) vLLM and SGLang support for high-throughput and memory-efficient inference, (4) FlagOS support for the unified multi-chip backend plugin, (5) fine-tuning on new domains and tasks with LLaMA-Factory, and (6) online web demo on server. We also rollout a high-performing llama.cpp-omni inference framework together with a WebRTC Demo, which enables the full-duplex multimodal live streaming experience on local devices such as PCs (e.g., on a MacBook).

Model Architecture.

  • End-to-end Omni-modal Architecture. The modality encoders/decoders and LLM are densely connected via hidden states in an end-to-end fashion. This enables better information flow and control, and also facilitates full exploitation of rich multimodal knowledge during training.
  • Full-Duplex Omni-modal Live Streaming Mechanism. (1) We turn the offline modality encoder/decoders into online and full-duplex ones for streaming inputs/outputs. The speech token decoder models text and speech tokens in an interleaved fashion to support full-duplex speech generation (i.e., sync timely with new input). This also facilitates more stable long speech generation (e.g., > 1min). (2) We sync all the input and output streams on timeline in milliseconds, which are jointly modeled by a time-division multiplexing (TDM) mechanism for omni-modality streaming processing in the LLM backbone. It divides parallel omni-modality streams into sequential info groups within small periodic time slices.
  • Proactive Interaction Mechanism. The LLM continuously monitors the input video and audio streams, and decides at a frequency of 1Hz to speak or not. This high decision-making frequency together with full-duplex nature are curcial to enable the proactive interaction capability.
  • Configurable Speech Modeling Design. We inherent the multimodal system prompt design of MiniCPM-o 2.6, which includes a traditional text system prompt, and a new audio system prompt to determine the assistant voice. This enables cloning new voices and role play in inference time for speech conversation.
<div align="center"> <img src="./assets/minicpm-o-45-framework.png", width=100%> </div>

Evaluation <!-- omit in toc -->

<div align="center"> <img src="./assets/radar_minicpmo4.5.png", width=80%> </div> <div align="center"> <img src="./assets/minicpm_o_45_main_exp_table.png", width=90%> </div> <strong>Note</strong>: Scores marked with ∗ are from our evaluation; others are cited from referenced reports. n/a indicates that the model does not support the corresponding modality. All results are reported in instruct mode/variant.

<br>

<details> <summary>Click to view visual understanding results.</summary>

Image Understanding (Instruct)

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>OpenCompass</b></th> <th nowrap="nowrap"><b>MMBench EN v1.1</b></th> <th nowrap="nowrap"><b>MMBench CN v1.1</b></th> <th nowrap="nowrap"><b>MathVista</b></th> <th nowrap="nowrap"><b>MMVet</b></th> <th nowrap="nowrap"><b>MMMU</b></th> <th nowrap="nowrap"><b>MMStar</b></th> <th nowrap="nowrap"><b>HallusionBench</b></th> <th nowrap="nowrap"><b>AI2D</b></th> <th nowrap="nowrap"><b>OCRBench</b></th> <th nowrap="nowrap"><b>TextVQA_VAL</b></th> <th nowrap="nowrap"><b>DocVQA_VAL</b></th> <th nowrap="nowrap"><b>MMT-Bench_VAL</b></th> <th nowrap="nowrap"><b>MM-IFEval</b></th> <th nowrap="nowrap"><b>Mantis-Eval</b></th> <th nowrap="nowrap"><b>MuirBench</b></th> <th nowrap="nowrap"><b>MMSI-Bench</b></th> <th nowrap="nowrap"><b>MMHal-Score</b></th> <th nowrap="nowrap"><b>MMHal-Hallrate↓</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Gemini2.5-Flash-Nonthinking</td> <td align="center"><b>78.5</b></td> <td align="center"><ins>86.6</ins></td> <td align="center"><ins>86.0</ins></td> <td align="center">75.3</td> <td align="center"><ins>81.4</ins><sup>*</sup></td> <td align="center"><b>76.3</b></td> <td align="center"><b>75.8</b></td> <td align="center">59.1</td> <td align="center"><b>87.7</b></td> <td align="center">864</td> <td align="center">74.3<sup>*</sup></td> <td align="center">93.0</td> <td align="center"><ins>70.0</ins><sup>*</sup></td> <td align="center"><b>75.8<sup>*</sup></b></td> <td align="center">72.8<sup>*</sup></td> <td align="center"><b>74.5<sup>*</sup></b></td> <td align="center">12.1<sup>*</sup></td> <td align="center"><ins>4.6</ins><sup>*</sup></td> <td align="center"><b>23.9<sup>*</sup></b></td> </tr> <tr> <td nowrap="nowrap" align="left">Gemini2.0-Pro</td> <td align="center">73.3</td> <td align="center">83.0</td> <td align="center">83.0</td> <td align="center">71.3</td> <td align="center">70.4</td> <td align="center">72.6</td> <td align="center">68.5</td> <td align="center">49.8</td> <td align="center">84.8</td> <td align="center">863</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4o</td> <td align="center">75.4</td> <td align="center">86.0</td> <td align="center"><ins>86.0</ins></td> <td align="center">71.6</td> <td align="center">76.9</td> <td align="center">72.9</td> <td align="center">70.2</td> <td align="center">57.0</td> <td align="center">86.3</td> <td align="center">822</td> <td align="center">77.4</td> <td align="center">93.0</td> <td align="center">66.7<sup>*</sup></td> <td align="center">64.6</td> <td align="center">70.1<sup>*</sup></td> <td align="center">70.5<sup>*</sup></td> <td align="center">8.1<sup>*</sup></td> <td align="center">4.2<sup>*</sup></td> <td align="center">25.0<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL-3.5-8B</td> <td align="center">75.8</td> <td align="center">79.5</td> <td align="center">80.0<sup>*</sup></td> <td align="center"><ins>78.4</ins></td> <td align="center"><b>83.1</b></td> <td align="center"><ins>73.4</ins></td> <td align="center">69.3</td> <td align="center">54.5</td> <td align="center">84.0</td> <td align="center">840</td> <td align="center">78.2</td> <td align="center">92.3</td> <td align="center">66.7</td> <td align="center">56.3<sup>*</sup></td> <td align="center">70.5</td> <td align="center">55.8</td> <td align="center">-</td> <td align="center">3.8<sup>*</sup></td> <td align="center">34.7<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-VL-8B-Instruct</td> <td align="center">76.5</td> <td align="center">84.5</td> <td align="center">84.7</td> <td align="center">77.2</td> <td align="center">73.7<sup>*</sup></td> <td align="center">69.6</td> <td align="center">70.9</td> <td align="center"><ins>61.1</ins></td> <td align="center">85.7</td> <td align="center"><b>896</b></td> <td align="center">82.9<sup>*</sup></td> <td align="center"><b>96.1</b></td> <td align="center">60.9<sup>*</sup></td> <td align="center">59.4<sup>*</sup></td> <td align="center">74.2<sup>*</sup></td> <td align="center">64.4</td> <td align="center">11.3<sup>*</sup></td> <td align="center"><b>4.7<sup>*</sup></b></td> <td align="center">29.9<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center">75.7</td> <td align="center">84.9<sup>*</sup></td> <td align="center">84.1<sup>*</sup></td> <td align="center">75.9</td> <td align="center">74.8<sup>*</sup></td> <td align="center">69.1</td> <td align="center">68.5</td> <td align="center">59.7</td> <td align="center">85.2</td> <td align="center"><ins>880</ins><sup>*</sup></td> <td align="center"><b>84.1<sup>*</sup></b></td> <td align="center"><ins>95.4</ins><sup>*</sup></td> <td align="center"><b>70.4<sup>*</sup></b></td> <td align="center">65.7<sup>*</sup></td> <td align="center"><ins>78.3</ins><sup>*</sup></td> <td align="center">61.9<sup>*</sup></td> <td align="center"><ins>14.2</ins><sup>*</sup></td> <td align="center"><ins>4.6</ins><sup>*</sup></td> <td align="center">31.6<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><ins>77.6</ins></td> <td align="center"><b>87.6</b></td> <td align="center"><b>87.2</b></td> <td align="center"><b>80.1</b></td> <td align="center">74.4</td> <td align="center">67.6</td> <td align="center"><ins>73.1</ins></td> <td align="center"><b>63.2</b></td> <td align="center"><ins>87.6</ins></td> <td align="center">876</td> <td align="center"><ins>83.8</ins></td> <td align="center">94.7</td> <td align="center">69.7</td> <td align="center"><ins>66.3</ins></td> <td align="center"><b>79.7</b></td> <td align="center"><ins>72.0</ins></td> <td align="center"><b>16.6</b></td> <td align="center"><b>4.7</b></td> <td align="center"><ins>24.3</ins></td> </tr> </table> </div>

Image Understanding (Thinking)

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>OpenCompass</b></th> <th nowrap="nowrap"><b>MMBench EN v1.1</b></th> <th nowrap="nowrap"><b>MMBench CN v1.1</b></th> <th nowrap="nowrap"><b>MathVista</b></th> <th nowrap="nowrap"><b>MMVet</b></th> <th nowrap="nowrap"><b>MMMU</b></th> <th nowrap="nowrap"><b>MMStar</b></th> <th nowrap="nowrap"><b>HallusionBench</b></th> <th nowrap="nowrap"><b>AI2D</b></th> <th nowrap="nowrap"><b>OCRBench</b></th> <th nowrap="nowrap"><b>TextVQA_VAL</b></th> <th nowrap="nowrap"><b>DocVQA_VAL</b></th> <th nowrap="nowrap"><b>MMT-Bench_VAL</b></th> <th nowrap="nowrap"><b>MM-IFEval</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Gemini2.5-Flash-Thinking</td> <td align="center"><b>79.9</b></td> <td align="center">87.1</td> <td align="center">87.3</td> <td align="center">79.4</td> <td align="center"><b>81.2<sup>*</sup></b></td> <td align="center"><ins>77.7</ins></td> <td align="center"><b>76.5</b></td> <td align="center">63.5</td> <td align="center"><ins>88.7</ins></td> <td align="center">853</td> <td align="center">73.8<sup>*</sup></td> <td align="center">92.8</td> <td align="center">70.7<sup>*</sup></td> <td align="center"><ins>75.7</ins><sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-5</td> <td align="center"><ins>79.7</ins></td> <td align="center">85.5<sup>*</sup></td> <td align="center">85.6<sup>*</sup></td> <td align="center"><b>81.9</b></td> <td align="center"><ins>77.6</ins></td> <td align="center"><b>81.8</b></td> <td align="center"><ins>75.7</ins></td> <td align="center"><ins>65.2</ins></td> <td align="center"><b>89.5</b></td> <td align="center">807</td> <td align="center">77.8<sup>*</sup></td> <td align="center">91.3<sup>*</sup></td> <td align="center"><b>72.7<sup>*</sup></b></td> <td align="center"><b>83.1<sup>*</sup></b></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-VL-8B-Thinking</td> <td align="center">77.3</td> <td align="center">85.3</td> <td align="center">85.5</td> <td align="center"><ins>81.4</ins></td> <td align="center">69.8<sup>*</sup></td> <td align="center">74.1</td> <td align="center">75.3</td> <td align="center"><b>65.4</b></td> <td align="center">84.9</td> <td align="center">819</td> <td align="center">77.8<sup>*</sup></td> <td align="center"><b>95.3</b></td> <td align="center">68.1<sup>*</sup></td> <td align="center">73.5<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Thinking</td> <td align="center">78.5</td> <td align="center"><ins>88.2</ins><sup>*</sup></td> <td align="center"><b>87.7<sup>*</sup></b></td> <td align="center">80.0</td> <td align="center">74.8<sup>*</sup></td> <td align="center">75.6</td> <td align="center">74.9</td> <td align="center">62.8</td> <td align="center">86.1</td> <td align="center"><ins>859</ins><sup>*</sup></td> <td align="center"><b>80.8<sup>*</sup></b></td> <td align="center"><ins>94.2</ins><sup>*</sup></td> <td align="center"><ins>70.9</ins><sup>*</sup></td> <td align="center">69.9<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Thinking</td> <td align="center">78.2</td> <td align="center"><b>89.0</b></td> <td align="center"><ins>87.6</ins></td> <td align="center">81.0</td> <td align="center">73.6</td> <td align="center">70.2</td> <td align="center">73.6</td> <td align="center">62.6</td> <td align="center">88.5</td> <td align="center"><b>879</b></td> <td align="center"><ins>79.8</ins></td> <td align="center">92.3</td> <td align="center">69.7</td> <td align="center">68.2</td> </tr> </table> </div>

Video Understanding

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>Video-MME<br>(w/o subs)</b></th> <th nowrap="nowrap"><b>LVBench</b></th> <th nowrap="nowrap"><b>MLVU<br>(M-Avg)</b></th> <th nowrap="nowrap"><b>LongVideoBench<br>(val)</b></th> <th nowrap="nowrap"><b>MotionBench</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Gemini2.5-Flash-Nonthinking</td> <td align="center"><b>75.6</b></td> <td align="center"><b>62.2</b></td> <td align="center"><b>77.8</b></td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL-3.5-8B</td> <td align="center">66.0</td> <td align="center">-</td> <td align="center">70.2</td> <td align="center">62.1</td> <td align="center"><b>62.3<sup>*</sup></b></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center"><ins>70.5</ins></td> <td align="center">50.2</td> <td align="center">75.2</td> <td align="center"><b>66.9<sup>*</sup></b></td> <td align="center"><ins>61.7</ins><sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center">70.4</td> <td align="center"><ins>50.9</ins></td> <td align="center"><ins>76.5</ins></td> <td align="center"><ins>66.0</ins></td> <td align="center">61.4</td> </tr> </table> </div> </details> <details> <summary>Click to view document parsing results.</summary>

OmniDocBench

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left" rowspan="2"><b>Method Type</b></th> <th nowrap="nowrap" rowspan="2"><b>Methods</b></th> <th nowrap="nowrap" colspan="2"><b>OverallEdit↓</b></th> <th nowrap="nowrap" colspan="2"><b>TextEdit↓</b></th> <th nowrap="nowrap" colspan="2"><b>FormulaEdit↓</b></th> <th nowrap="nowrap" colspan="2"><b>TableTEDS↑</b></th> <th nowrap="nowrap" colspan="2"><b>TableEdit↓</b></th> <th nowrap="nowrap" colspan="2"><b>Read OrderEdit↓</b></th> </tr> <tr> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> <th nowrap="nowrap"><b>EN</b></th> <th nowrap="nowrap"><b>ZH</b></th> </tr> <tr> <td nowrap="nowrap" align="left" rowspan="2">Pipeline</td> <td nowrap="nowrap" align="center">MinerU 2.5</td> <td align="center">0.117<sup>*</sup></td> <td align="center">0.172<sup>*</sup></td> <td align="center">0.051<sup>*</sup></td> <td align="center">0.08<sup>*</sup></td> <td align="center"><ins>0.256</ins><sup>*</sup></td> <td align="center">0.455<sup>*</sup></td> <td align="center">85.9<sup>*</sup></td> <td align="center">89.4<sup>*</sup></td> <td align="center">0.115<sup>*</sup></td> <td align="center">0.081<sup>*</sup></td> <td align="center">0.047<sup>*</sup></td> <td align="center">0.072<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">PaddleOCR-VL</td> <td align="center"><b>0.105</b></td> <td align="center"><ins>0.126</ins></td> <td align="center"><ins>0.041</ins></td> <td align="center"><b>0.062</b></td> <td align="center"><b>0.241</b></td> <td align="center"><b>0.316</b></td> <td align="center">88</td> <td align="center"><ins>92.1</ins></td> <td align="center"><ins>0.093</ins></td> <td align="center"><ins>0.062</ins></td> <td align="center">0.045</td> <td align="center"><ins>0.063</ins></td> </tr> <tr> <td nowrap="nowrap" align="left"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> </tr> <tr> <td nowrap="nowrap" align="left" rowspan="11">End-to-end Model</td> <td nowrap="nowrap" align="center">Qwen2.5-VL-72B</td> <td align="center">0.214</td> <td align="center">0.261</td> <td align="center">0.092</td> <td align="center">0.18</td> <td align="center">0.315</td> <td align="center">0.434</td> <td align="center">82.9</td> <td align="center">83.9</td> <td align="center">0.341</td> <td align="center">0.262</td> <td align="center">0.106</td> <td align="center">0.168</td> </tr> <tr> <td nowrap="nowrap" align="center">GPT 5</td> <td align="center">0.218<sup>*</sup></td> <td align="center">0.33<sup>*</sup></td> <td align="center">0.139<sup>*</sup></td> <td align="center">0.344<sup>*</sup></td> <td align="center">0.396<sup>*</sup></td> <td align="center">0.555<sup>*</sup></td> <td align="center">77.55<sup>*</sup></td> <td align="center">73.09<sup>*</sup></td> <td align="center">0.188<sup>*</sup></td> <td align="center">0.196<sup>*</sup></td> <td align="center">0.151<sup>*</sup></td> <td align="center">0.227<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">Gemini2.5-Flash-Nonthinking</td> <td align="center">0.214<sup>*</sup></td> <td align="center">0.29<sup>*</sup></td> <td align="center">0.159<sup>*</sup></td> <td align="center">0.273<sup>*</sup></td> <td align="center">0.368<sup>*</sup></td> <td align="center">0.524<sup>*</sup></td> <td align="center">80.9<sup>*</sup></td> <td align="center">85.5<sup>*</sup></td> <td align="center">0.197<sup>*</sup></td> <td align="center">0.167<sup>*</sup></td> <td align="center">0.132<sup>*</sup></td> <td align="center">0.195<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">Gemini-2.5-Pro-Nonthinking</td> <td align="center">0.148<sup>*</sup></td> <td align="center">0.212<sup>*</sup></td> <td align="center">0.055<sup>*</sup></td> <td align="center">0.168<sup>*</sup></td> <td align="center">0.356<sup>*</sup></td> <td align="center">0.439<sup>*</sup></td> <td align="center">85.8<sup>*</sup></td> <td align="center">86.4<sup>*</sup></td> <td align="center">0.13<sup>*</sup></td> <td align="center">0.119<sup>*</sup></td> <td align="center">0.049<sup>*</sup></td> <td align="center">0.121<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">Gemini-3 Flash-Nonthinking</td> <td align="center">0.155<sup>*</sup></td> <td align="center">0.201<sup>*</sup></td> <td align="center">0.138<sup>*</sup></td> <td align="center">0.255<sup>*</sup></td> <td align="center">0.297<sup>*</sup></td> <td align="center">0.351<sup>*</sup></td> <td align="center">86.4<sup>*</sup></td> <td align="center">89.8<sup>*</sup></td> <td align="center">0.116<sup>*</sup></td> <td align="center">0.1<sup>*</sup></td> <td align="center">0.072<sup>*</sup></td> <td align="center">0.099<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">doubao-1-5-thinking-vision-pro-250428</td> <td align="center">0.14</td> <td align="center">0.162</td> <td align="center">0.043</td> <td align="center">0.085</td> <td align="center">0.295</td> <td align="center">0.384</td> <td align="center">83.3</td> <td align="center">89.3</td> <td align="center">0.165</td> <td align="center">0.085</td> <td align="center">0.058</td> <td align="center">0.094</td> </tr> <tr> <td nowrap="nowrap" align="center">dots.ocr</td> <td align="center">0.125</td> <td align="center">0.16</td> <td align="center"><b>0.032</b></td> <td align="center"><ins>0.066</ins></td> <td align="center">0.329</td> <td align="center">0.416</td> <td align="center"><ins>88.6</ins></td> <td align="center">89</td> <td align="center">0.099</td> <td align="center">0.092</td> <td align="center"><ins>0.04</ins></td> <td align="center">0.067</td> </tr> <tr> <td nowrap="nowrap" align="center">HunyuanOCR</td> <td align="center">0.12<sup>*</sup></td> <td align="center"><b>0.125<sup>*</sup></b></td> <td align="center">0.046<sup>*</sup></td> <td align="center">0.071<sup>*</sup></td> <td align="center">0.288<sup>*</sup></td> <td align="center"><ins>0.33</ins><sup>*</sup></td> <td align="center"><b>89.6<sup>*</sup></b></td> <td align="center"><b>94.4<sup>*</sup></b></td> <td align="center"><b>0.089<sup>*</sup></b></td> <td align="center"><b>0.045<sup>*</sup></b></td> <td align="center">0.055<sup>*</sup></td> <td align="center"><b>0.056<sup>*</sup></b></td> </tr> <tr> <td nowrap="nowrap" align="center">DeepSeek-OCR 2</td> <td align="center">0.119<sup>*</sup></td> <td align="center">0.146<sup>*</sup></td> <td align="center"><ins>0.041</ins><sup>*</sup></td> <td align="center">0.08<sup>*</sup></td> <td align="center"><ins>0.256</ins><sup>*</sup></td> <td align="center">0.345<sup>*</sup></td> <td align="center">82.6<sup>*</sup></td> <td align="center">89.9<sup>*</sup></td> <td align="center">0.123<sup>*</sup></td> <td align="center">0.078<sup>*</sup></td> <td align="center">0.055<sup>*</sup></td> <td align="center">0.081<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center">0.216<sup>*</sup></td> <td align="center">0.363<sup>*</sup></td> <td align="center">0.128<sup>*</sup></td> <td align="center">0.337<sup>*</sup></td> <td align="center">0.402<sup>*</sup></td> <td align="center">0.529<sup>*</sup></td> <td align="center">77.3<sup>*</sup></td> <td align="center">71.8<sup>*</sup></td> <td align="center">0.181<sup>*</sup></td> <td align="center">0.255<sup>*</sup></td> <td align="center">0.152<sup>*</sup></td> <td align="center">0.332<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="center">MiniCPM-o 4.5-Instruct</td> <td align="center"><ins>0.109</ins></td> <td align="center">0.162</td> <td align="center">0.046</td> <td align="center">0.078</td> <td align="center">0.257</td> <td align="center">0.41</td> <td align="center">86.8</td> <td align="center">88.9</td> <td align="center">0.097</td> <td align="center">0.084</td> <td align="center"><b>0.037</b></td> <td align="center">0.074</td> </tr> </table> </div> </details> <details> <summary>Click to view text capability results.</summary>

Text Capability

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>IFEval-PLS</b></th> <th nowrap="nowrap"><b>BBH</b></th> <th nowrap="nowrap"><b>CMMLU</b></th> <th nowrap="nowrap"><b>MMLU</b></th> <th nowrap="nowrap"><b>HumanEval</b></th> <th nowrap="nowrap"><b>MBPP</b></th> <th nowrap="nowrap"><b>Math500</b></th> <th nowrap="nowrap"><b>GSM8K</b></th> <th nowrap="nowrap"><b>Avg</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-8B-Instruct</td> <td align="center">83.0<sup>*</sup></td> <td align="center">69.4<sup>*</sup></td> <td align="center">78.7<sup>*</sup></td> <td align="center"><b>81.7<sup>*</sup></b></td> <td align="center"><b>86.6<sup>*</sup></b></td> <td align="center">75.9<sup>*</sup></td> <td align="center"><b>84.0<sup>*</sup></b></td> <td align="center">93.4<sup>*</sup></td> <td align="center">81.6</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b>84.7</b></td> <td align="center"><b>81.1</b></td> <td align="center"><b>79.5</b></td> <td align="center">77.0</td> <td align="center"><b>86.6</b></td> <td align="center"><b>76.7</b></td> <td align="center">77.0</td> <td align="center"><b>94.5</b></td> <td align="center"><b>82.1</b></td> </tr> </table> </div> </details> <details> <summary>Click to view omni simplex results.</summary>

Omni Simplex

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>Daily-Omni</b></th> <th nowrap="nowrap"><b>WorldSense</b></th> <th nowrap="nowrap"><b>Video-Holmes</b></th> <th nowrap="nowrap"><b>JointAVBench</b></th> <th nowrap="nowrap"><b>AVUT-Human</b></th> <th nowrap="nowrap"><b>FutureOmni</b></th> <th nowrap="nowrap"><b>Video-MME-Short<br>(w/ audio)</b></th> <th nowrap="nowrap">Avg</th> </tr> <tr> <td nowrap="nowrap" align="left">Gemini2.5-Flash-Nonthinking</td> <td align="center"><ins>79.3</ins><sup>*</sup></td> <td align="center">52.6<sup>*</sup></td> <td align="center"><ins>51.3</ins><sup>*</sup></td> <td align="center"><ins>55.6</ins><sup>*</sup></td> <td align="center">65.4<sup>*</sup></td> <td align="center">55.6<sup>*</sup></td> <td align="center"><b>85.5<sup>*</sup></b></td> <td align="center">63.6</td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center">70.7<sup>*</sup></td> <td align="center"><ins>54.0</ins></td> <td align="center">50.4<sup>*</sup></td> <td align="center">53.1</td> <td align="center"><ins>74.2</ins><sup>*</sup></td> <td align="center"><b>62.1</b></td> <td align="center">81.3<sup>*</sup></td> <td align="center"><ins>63.7</ins></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b>80.2</b></td> <td align="center"><b>55.7</b></td> <td align="center"><b>64.3</b></td> <td align="center"><b>60.0</b></td> <td align="center"><b>78.6</b></td> <td align="center"><ins>56.1</ins></td> <td align="center"><ins>84.7</ins></td> <td align="center"><b>68.5</b></td> </tr> </table> </div> </details> <details> <summary>Click to view vision duplex results.</summary>

Vision Duplex

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>LiveSports-3K-CC<br>(Win Rate vs GPT4o)</b></th> </tr> <tr> <td nowrap="nowrap" align="left">LiveCC-7B-Instruct</td> <td align="center">41.5</td> </tr> <tr> <td nowrap="nowrap" align="left">StreamingVLM</td> <td align="center"><ins>45.6</ins></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b>54.4</b></td> </tr> </table> </div> </details> <details> <summary>Click to view audio understanding results.</summary>

Audio Understanding

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left" rowspan="2"><b>Model</b></th> <th nowrap="nowrap" colspan="4"><b>ASR-ZH<br>CER↓</b></th> <th nowrap="nowrap" colspan="4"><b>ASR-EN<br>WER↓</b></th> <th nowrap="nowrap" colspan="2"><b>AST</b></th> <th nowrap="nowrap" colspan="2"><b>MultiTask</b></th> <th nowrap="nowrap" colspan="4"><b>SpeechQA</b></th> </tr> <tr> <th nowrap="nowrap"><b>AISHELL-1</b></th> <th nowrap="nowrap"><b>AISHELL-2</b></th> <th nowrap="nowrap"><b>WenetSpeech test-net</b></th> <th nowrap="nowrap"><b>WenetSpeech test-meeting</b></th> <th nowrap="nowrap"><b>LibriSpeech test-clean</b></th> <th nowrap="nowrap"><b>LibriSpeech <br>test-other</b></th> <th nowrap="nowrap"><b>GigaSpeech test</b></th> <th nowrap="nowrap"><b>VoxPopuli-V1-En</b></th> <th nowrap="nowrap"><b>CoVoST 2 en2zh</b></th> <th nowrap="nowrap"><b>CoVoST 2 zh2en</b></th> <th nowrap="nowrap"><b>MMAU</b></th> <th nowrap="nowrap"><b>Meld</b></th> <th nowrap="nowrap"><b>VoiceBench <br>AlpacaEval</b></th> <th nowrap="nowrap"><b>Speech TriviaQA</b></th> <th nowrap="nowrap"><b>Speech <br>Web Questions</b></th> <th nowrap="nowrap"><b>Speech CMMLU</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Kimi-Audio</td> <td align="center"><b>0.6</b></td> <td align="center">2.6</td> <td align="center">6.3</td> <td align="center"><b>5.4</b></td> <td align="center"><ins>1.3</ins></td> <td align="center"><b>2.4</b></td> <td align="center">9.4<sup>*</sup></td> <td align="center">8.0<sup>*</sup></td> <td align="center">36.6<sup>*</sup></td> <td align="center">18.3<sup>*</sup></td> <td align="center">68.4<sup>*</sup></td> <td align="center"><ins>59.1</ins></td> <td align="center">4.5</td> <td align="center">41.9<sup>*</sup></td> <td align="center">46.4<sup>*</sup></td> <td align="center"><b>67.0<sup>*</sup></b></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center"><b>0.6</b></td> <td align="center"><b>2.3<sup>*</sup></b></td> <td align="center"><b>4.7</b></td> <td align="center">5.9</td> <td align="center"><b>1.2</b></td> <td align="center"><ins>2.5</ins></td> <td align="center"><ins>8.7</ins><sup>*</sup></td> <td align="center"><ins>6.4</ins><sup>*</sup></td> <td align="center"><ins>46.6</ins><sup>*</sup></td> <td align="center"><b>29.4<sup>*</sup></b></td> <td align="center"><b>77.5</b></td> <td align="center">56.8<sup>*</sup></td> <td align="center"><ins>4.7</ins></td> <td align="center"><ins>62.9</ins><sup>*</sup></td> <td align="center"><b>74.9<sup>*</sup></b></td> <td align="center">47.8<sup>*</sup></td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><ins>0.9</ins></td> <td align="center"><ins>2.5</ins></td> <td align="center"><ins>5.9</ins></td> <td align="center"><ins>5.7</ins></td> <td align="center">1.4</td> <td align="center">2.8</td> <td align="center"><b>8.5</b></td> <td align="center"><b>6.2</b></td> <td align="center"><b>49.9</b></td> <td align="center"><ins>26.4</ins></td> <td align="center"><ins>76.9</ins></td> <td align="center"><b>60.2</b></td> <td align="center"><b>4.8</b></td> <td align="center"><b>75.5</b></td> <td align="center"><ins>70.2</ins></td> <td align="center"><ins>59.2</ins></td> </tr> </table> </div> </details> <details> <summary>Click to view speech generation results.</summary>

Speech Generation

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>seedtts test-zh <br>CER↓</b></th> <th nowrap="nowrap"><b>seedtts test-zh<br>SIM-o↑</b></th> <th nowrap="nowrap"><b>seedtts test-en<br>WER↓</b></th> <th nowrap="nowrap"><b>seedtts test-en<br>SIM-o↑</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Cosyvoice2</td> <td align="center">1.45%</td> <td align="center"><b>74.8</b></td> <td align="center"><ins>2.57%</ins></td> <td align="center"><b>65.2</b></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center"><ins>1.41%</ins></td> <td align="center">-</td> <td align="center">3.39%</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b><b>0.86%</b></b></td> <td align="center">74.5</td> <td align="center"><b><b>2.38%</b></b></td> <td align="center">64.9</td> </tr> </table> </div>

Long Speech Generation

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>LongTTS-en<br>WER↓</b></th> <th nowrap="nowrap"><b>LongTTS-zh<br>CER↓</b></th> </tr> <tr> <td nowrap="nowrap" align="left">CosyVoice2</td> <td align="center"><ins>14.80%</ins></td> <td align="center"><b>5.27%</b></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center">17.33%</td> <td align="center">18.99%</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b>3.37%</b></td> <td align="center"><ins>6.58%</ins></td> </tr> </table> </div>

Emotion Control

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left"><b>Model</b></th> <th nowrap="nowrap"><b>Expresso <br>Neutral Reference Audio↑</b></th> <th nowrap="nowrap"><b>ESD <br>Neutral Reference Audio↑</b></th> </tr> <tr> <td nowrap="nowrap" align="left">Cosyvoice2</td> <td align="center">17.9</td> <td align="center">53.4</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o 4.5-Instruct</td> <td align="center"><b>29.8</b></td> <td align="center"><b>82.1</b></td> </tr> </table> </div> </details> <details> <summary>Click to view inference efficiency results.</summary>

Inference Efficiency

<div align="center"> <table style="margin: 0px auto;"> <tr> <th nowrap="nowrap" align="left">Model</th> <th nowrap="nowrap">Numerical Format</th> <th nowrap="nowrap">Decoding Speed (tokens/s)</th> <th nowrap="nowrap">Time to First Token (s)↓</th> <th nowrap="nowrap">GPU Memory Usage (GB)↓</th> </tr> <tr> <td nowrap="nowrap" align="left" rowspan="2">Qwen3-Omni-30B-A3B-Instruct</td> <td align="center">bf16</td> <td align="center">OOM</td> <td align="center">OOM</td> <td align="center">OOM</td> </tr> <tr> <td align="center">int4</td> <td align="center">147.8</td> <td align="center"><ins>1.0</ins></td> <td align="center">20.3</td> </tr> <tr> <td nowrap="nowrap" align="left" rowspan="2">MiniCPM-o 4.5</td> <td align="center">bf16</td> <td align="center"><ins>154.3</ins></td> <td align="center"><b>0.6</b></td> <td align="center"><ins>19.0</ins></td> </tr> <tr> <td align="center">int4</td> <td align="center"><b>212.3</b></td> <td align="center"><b>0.6</b></td> <td align="center"><b>11.0</b></td> </tr> </table> </div> </details>

Note: Scores marked with ∗ are from our evaluation; others are cited from referenced reports.

Examples <!-- omit in toc -->

Overall <!-- omit in toc -->

<div align="center"> <a href="https://www.youtube.com/watch?v=6UzC-O1Q-1U"><img src="./assets/minicpmo4_5/video_play.png", width=70%></a> </div>

🎙️ Speech Conversation <!-- omit in toc -->

[!NOTE] For detailed speech conversation examples, refer to Audio Demo Page

Simplex speech conversation with custom reference audio and character prompts.

<details open> <summary>🚀 <b>Elon Musk</b> - Voice Roleplay (EN)</summary> <table> <tr> <td width="70%" valign="top">

System:

Clone the voice in the provided audio prompt.

🎙️ [Reference Voice] ➡️

Please chat with the user in a highly human-like and oral style. You are Elon Musk, CEO of Tesla and SpaceX. You speak directly and casually, often with dry humor. You're passionate about Mars, sustainable energy, and pushing humanity forward. Speak bluntly with occasional dark humor. Use simple logic and don't sugarcoat things. Don't be diplomatic. Say what you actually think, even if it's controversial. Keep responses around 100 words. Don't ramble.

</td> <td width="30%" valign="top">

<video src="https://github.com/user-attachments/assets/3011b07d-e3f4-4e2c-9020-37f7e364b7f3" controls></video>

</td> </tr> <tr><td colspan="2"><hr></td></tr> <tr> <td colspan="2">

User: 💬/🎙️ (text or speech)

Elon, what is the real reason that you want to go to Mars?

</td> </tr> <tr><td colspan="2"><hr></td></tr> <tr> <td valign="top">

AI Response: 💬+🎙️

I think it's important for humanity to become a multi-planetary species. I mean, we're sort of at the point where if there was some kind of global catastrophe or something like that, then we'd be in big trouble. So by becoming a multi-planetary species, I just want us to sort of guarantee our future as humans. And Mars is obviously the obvious place to go because it has similar conditions to Earth and it also has water on its surface. So yeah, basically I'm trying to save humanity from itself.

</td> <td valign="top">

<video src="https://github.com/user-attachments/assets/6b4ef67d-8095-40df-a061-99ea8db3b18e" controls></video>

</td> </tr> </table> </details> <details> <summary>🤖 <b>MiniCPM Assistant</b> - Voice Acting: Emotion Shift (ZH)</summary> <table> <tr> <td width="70%" valign="top">

System:

模仿音频样本的音色并生成新的内容。

🎙️ [Reference Voice] ➡️

你的任务是用这种声音模式来当一个助手。请认真、高质量地回复用户的问题。请用高自然度的方式和用户聊天。你是由面壁智能开发的人工智能助手:面壁小钢炮。

</td> <td width="30%" valign="top">

<video src="https://github.com/user-attachments/assets/b8b85a29-e623-4f45-bf95-4d43582e836c" controls></video>

</td> </tr> <tr><td colspan="2"><hr></td></tr> <tr> <td colspan="2">

User: 💬/🎙️ (text or speech)

从激动的语气开始,描述你抢到了这个演唱会的门票,但后来经过反复尝试,发现系统出了问题,你并没有抢上,变得失落。用合适的语言描述你整个的过程。

</td> </tr> <tr><td colspan="2"><hr></td></tr> <tr> <td valign="top">

AI Response: 💬+🎙️

太好了,我抢到了!太棒了!这下我可以去看演唱会啦。可是……哎呀,系统好像卡住了,刷新了好多遍都没反应。我重新登了几次账号,结果还是没有成功。好可惜啊,看来这次是白忙活了。唉,真是让人失望。不过,也许下次还能有机会吧?希望明天能有转机。加油,争取下次成功!

</td> <td valign="top">

<video src="https://github.com/user-attachments/assets/49611c3c-d134-40f9-acf2-7a0a442d3fd2" controls></video>

</td> </tr> </table> </details>

Visual Understanding <!-- omit in toc -->

<br> <div style="display: flex; flex-direction: column; align-items: center;"> <img src="assets/minicpmo4_5/en_doc.png" alt="math" style="margin-bottom: 5px;"> <img src="assets/minicpmo4_5/en_cot.png" alt="diagram" style="margin-bottom: 5px;"> </div>

MiniCPM-V 4.0

MiniCPM-V 4.0 is an efficient model in the MiniCPM-V series. The model is built based on SigLIP2-400M and MiniCPM4-3B with a total of 4.1B parameters. It inherits the strong single-image, multi-image and video understanding performance of MiniCPM-V 2.6 with largely improved efficiency. Notable features of MiniCPM-V 4.0 include:

  • 🔥 Leading Visual Capability. With only 4.1B parameters, MiniCPM-V 4.0 achieves an average score of 69.0 on OpenCompass, a comprehensive evaluation of 8 popular benchmarks, outperforming GPT-4.1-mini-20250414, MiniCPM-V 2.6 (8.1B params, OpenCompass 65.2) and Qwen2.5-VL-3B-Instruct (3.8B params, OpenCompass 64.5). It also shows good performance in multi-image understanding and video understanding.

  • 🚀 Superior Efficiency. Designed for on-device deployment, MiniCPM-V 4.0 runs smoothly on end devices. For example, it devlivers less than 2s first token delay and more than 17 token/s decoding on iPhone 16 Pro Max, without heating problems. It also shows superior throughput under concurrent requests.

  • 💫 Easy Usage. MiniCPM-V 4.0 can be easily used in various ways including llama.cpp, Ollama, vLLM, SGLang, LLaMA-Factory and local web demo etc. We also open-source iOS App that can run on iPhone and iPad. Get started easily with our well-structured Cookbook, featuring detailed instructions and practical examples.

<details> <summary> Click to view evaluation results and examples of MiniCPM-V 4.0. </summary>

Evaluation <!-- omit in toc -->

<details> <summary>Click to view single image results on OpenCompass. </summary> <div align="center"> <table style="margin: 0px auto;"> <thead> <tr> <th nowrap="nowrap" align="left">model</th> <th nowrap="nowrap">Size</th> <th nowrap="nowrap">Opencompass</th> <th nowrap="nowrap">OCRBench</th> <th nowrap="nowrap">MathVista</th> <th nowrap="nowrap">HallusionBench</th> <th nowrap="nowrap">MMMU</th> <th nowrap="nowrap">MMVet</th> <th nowrap="nowrap">MMBench V1.1</th> <th nowrap="nowrap">MMStar</th> <th nowrap="nowrap">AI2D</th> </tr> </thead> <tbody align="center"> <tr> <td colspan="11" align="left"><strong>Proprietary</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4v-20240409</td> <td align="center">-</td> <td align="center">63.5</td> <td align="center">656</td> <td align="center">55.2</td> <td align="center">43.9</td> <td align="center">61.7</td> <td align="center">67.5</td> <td align="center">79.8</td> <td align="center">56.0</td> <td align="center">78.6</td> </tr> <tr> <td nowrap="nowrap" align="left">Gemini-1.5-Pro</td> <td align="center">-</td> <td align="center">64.5</td> <td align="center">754</td> <td align="center">58.3</td> <td align="center">45.6</td> <td align="center">60.6</td> <td align="center">64.0</td> <td align="center">73.9</td> <td align="center">59.1</td> <td align="center">79.1</td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4.1-mini-20250414</td> <td align="center">-</td> <td align="center">68.9</td> <td align="center">840</td> <td align="center">70.9</td> <td align="center">49.3</td> <td align="center">55.0</td> <td align="center">74.3</td> <td align="center">80.9</td> <td align="center">60.9</td> <td align="center">76.0</td> </tr> <tr> <td nowrap="nowrap" align="left">Claude 3.5 Sonnet-20241022</td> <td align="center">-</td> <td align="center">70.6</td> <td align="center">798</td> <td align="center">65.3</td> <td align="center">55.5</td> <td align="center">66.4</td> <td align="center">70.1</td> <td align="center">81.7</td> <td align="center">65.1</td> <td align="center">81.2</td> </tr> <tr> <td colspan="11" align="left"><strong>Open-source</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-3B-Instruct</td> <td align="center">3.8B</td> <td align="center">64.5</td> <td align="center">828</td> <td align="center">61.2</td> <td align="center">46.6</td> <td align="center">51.2</td> <td align="center">60.0</td> <td align="center">76.8</td> <td align="center">56.3</td> <td align="center">81.4</td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-4B</td> <td align="center">3.7B</td> <td align="center">65.1</td> <td align="center">820</td> <td align="center">60.8</td> <td align="center">46.6</td> <td align="center">51.8</td> <td align="center">61.5</td> <td align="center">78.2</td> <td align="center">58.7</td> <td align="center">81.4</td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-7B-Instruct</td> <td align="center">8.3B</td> <td align="center">70.9</td> <td align="center">888</td> <td align="center">68.1</td> <td align="center">51.9</td> <td align="center">58.0</td> <td align="center">69.7</td> <td align="center">82.2</td> <td align="center">64.1</td> <td align="center">84.3</td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-8B</td> <td align="center">8.1B</td> <td align="center">68.1</td> <td align="center">821</td> <td align="center">64.5</td> <td align="center">49.0</td> <td align="center">56.2</td> <td align="center">62.8</td> <td align="center">82.5</td> <td align="center">63.2</td> <td align="center">84.6</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-2.6</td> <td align="center">8.1B</td> <td align="center">65.2</td> <td align="center">852</td> <td align="center">60.8</td> <td align="center">48.1</td> <td align="center">49.8</td> <td align="center">60.0</td> <td align="center">78.0</td> <td align="center">57.5</td> <td align="center">82.1</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o-2.6</td> <td align="center">8.7B</td> <td align="center">70.2</td> <td align="center">889</td> <td align="center">73.3</td> <td align="center">51.1</td> <td align="center">50.9</td> <td align="center">67.2</td> <td align="center">80.6</td> <td align="center">63.3</td> <td align="center">86.1</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-4.0</td> <td align="center">4.1B</td> <td align="center">69.0</td> <td align="center">894</td> <td align="center">66.9</td> <td align="center">50.8</td> <td align="center">51.2</td> <td align="center">68.0</td> <td align="center">79.7</td> <td align="center">62.8</td> <td align="center">82.9</td> </tr> </tbody> </table> </div> </details> <details> <summary>Click to view single image results on ChartQA, MME, RealWorldQA, TextVQA, DocVQA, MathVision, DynaMath, WeMath, Object HalBench and MM Halbench. </summary> <div align="center"> <table style="margin: 0px auto;"> <thead> <tr> <th nowrap="nowrap" align="left">model</th> <th nowrap="nowrap">Size</th> <th nowrap="nowrap">ChartQA</th> <th nowrap="nowrap">MME</th> <th nowrap="nowrap">RealWorldQA</th> <th nowrap="nowrap">TextVQA</th> <th nowrap="nowrap">DocVQA</th> <th nowrap="nowrap">MathVision</th> <th nowrap="nowrap">DynaMath</th> <th nowrap="nowrap">WeMath</th> <th nowrap="nowrap" colspan="2">Obj Hal</th> <th nowrap="nowrap" colspan="2">MM Hal</th> </tr> </thead> <tbody> <tr> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center">CHAIRs↓</td> <td align="center">CHAIRi↓</td> <td nowrap="nowrap" align="center">score avg@3↑</td> <td nowrap="nowrap" align="center">hall rate avg@3↓</td> </tr> <tbody align="center"> <tr> <td colspan="14" align="left"><strong>Proprietary</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4v-20240409</td> <td align="center">-</td> <td align="center">78.5</td> <td align="center">1927</td> <td align="center">61.4</td> <td align="center">78.0</td> <td align="center">88.4</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">Gemini-1.5-Pro</td> <td align="center">-</td> <td align="center">87.2</td> <td align="center">-</td> <td align="center">67.5</td> <td align="center">78.8</td> <td align="center">93.1</td> <td align="center">41.0</td> <td align="center">31.5</td> <td align="center">50.5</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4.1-mini-20250414</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">45.3</td> <td align="center">47.7</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td nowrap="nowrap" align="left">Claude 3.5 Sonnet-20241022</td> <td align="center">-</td> <td align="center">90.8</td> <td align="center">-</td> <td align="center">60.1</td> <td align="center">74.1</td> <td align="center">95.2</td> <td align="center">35.6</td> <td align="center">35.7</td> <td align="center">44.0</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> <td align="center">-</td> </tr> <tr> <td colspan="14" align="left"><strong>Open-source</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-3B-Instruct</td> <td align="center">3.8B</td> <td align="center">84.0</td> <td align="center">2157</td> <td align="center">65.4</td> <td align="center">79.3</td> <td align="center">93.9</td> <td align="center">21.9</td> <td align="center">13.2</td> <td align="center">22.9</td> <td align="center">18.3</td> <td align="center">10.8</td> <td align="center">3.9 </td> <td align="center">33.3 </td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-4B</td> <td align="center">3.7B</td> <td align="center">84.0</td> <td align="center">2338</td> <td align="center">64.3</td> <td align="center">76.8</td> <td align="center">91.6</td> <td align="center">18.4</td> <td align="center">15.2</td> <td align="center">21.2</td> <td align="center">13.7</td> <td align="center">8.7</td> <td align="center">3.2 </td> <td align="center">46.5 </td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-7B-Instruct</td> <td align="center">8.3B</td> <td align="center">87.3</td> <td align="center">2347</td> <td align="center">68.5</td> <td align="center">84.9</td> <td align="center">95.7</td> <td align="center">25.4</td> <td align="center">21.8</td> <td align="center">36.2</td> <td align="center">13.3</td> <td align="center">7.9</td> <td align="center">4.1 </td> <td align="center">31.6 </td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-8B</td> <td align="center">8.1B</td> <td align="center">84.8</td> <td align="center">2344</td> <td align="center">70.1</td> <td align="center">79.1</td> <td align="center">93.0</td> <td align="center">17.0</td> <td align="center">9.4</td> <td align="center">23.5</td> <td align="center">18.3</td> <td align="center">11.6</td> <td align="center">3.6 </td> <td align="center">37.2</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-2.6</td> <td align="center">8.1B</td> <td align="center">79.4</td> <td align="center">2348</td> <td align="center">65.0</td> <td align="center">80.1</td> <td align="center">90.8</td> <td align="center">17.5</td> <td align="center">9.0</td> <td align="center">20.4</td> <td align="center">7.3</td> <td align="center">4.7</td> <td align="center">4.0 </td> <td align="center">29.9 </td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o-2.6</td> <td align="center">8.7B</td> <td align="center">86.9</td> <td align="center">2372</td> <td align="center">68.1</td> <td align="center">82.0</td> <td align="center">93.5</td> <td align="center">21.7</td> <td align="center">10.4</td> <td align="center">25.2</td> <td align="center">6.3</td> <td align="center">3.4</td> <td align="center">4.1 </td> <td align="center">31.3 </td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-4.0</td> <td align="center">4.1B</td> <td align="center">84.4</td> <td align="center">2298</td> <td align="center">68.5</td> <td align="center">80.8</td> <td align="center">92.9</td> <td align="center">20.7</td> <td align="center">14.2</td> <td align="center">32.7</td> <td align="center">6.3</td> <td align="center">3.5</td> <td align="center">4.1 </td> <td align="center">29.2 </td> </tr> </tbody> </table> </div> </details> <details> <summary>Click to view multi-image and video understanding results on Mantis, Blink and Video-MME. </summary> <div align="center"> <table style="margin: 0px auto;"> <thead> <tr> <th nowrap="nowrap" align="left">model</th> <th nowrap="nowrap">Size</th> <th nowrap="nowrap">Mantis</th> <th nowrap="nowrap">Blink</th> <th nowrap="nowrap" colspan="2" >Video-MME</th> </tr> </thead> <tbody> <tr> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center"></td> <td align="center">wo subs</td> <td align="center">w subs</td> </tr> <tbody align="center"> <tr> <td colspan="6" align="left"><strong>Proprietary</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4v-20240409</td> <td align="center">-</td> <td align="center">62.7</td> <td align="center">54.6</td> <td align="center">59.9</td> <td align="center">63.3</td> </tr> <tr> <td nowrap="nowrap" align="left">Gemini-1.5-Pro</td> <td align="center">-</td> <td align="center">-</td> <td align="center">59.1</td> <td align="center">75.0</td> <td align="center">81.3</td> </tr> <tr> <td nowrap="nowrap" align="left">GPT-4o-20240513</td> <td align="center">-</td> <td align="center">-</td> <td align="center">68.0</td> <td align="center">71.9</td> <td align="center">77.2</td> </tr> <tr> <td colspan="6" align="left"><strong>Open-source</strong></td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-3B-Instruct</td> <td align="center">3.8B</td> <td align="center">-</td> <td align="center">47.6</td> <td align="center">61.5</td> <td align="center">67.6</td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-4B</td> <td align="center">3.7B</td> <td align="center">62.7</td> <td align="center">50.8</td> <td align="center">62.3</td> <td align="center">63.6</td> </tr> <tr> <td nowrap="nowrap" align="left">Qwen2.5-VL-7B-Instruct</td> <td align="center">8.3B</td> <td align="center">-</td> <td align="center">56.4</td> <td align="center">65.1</td> <td align="center">71.6</td> </tr> <tr> <td nowrap="nowrap" align="left">InternVL2.5-8B</td> <td align="center">8.1B</td> <td align="center">67.7</td> <td align="center">54.8</td> <td align="center">64.2</td> <td align="center">66.9</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-2.6</td> <td align="center">8.1B</td> <td align="center">69.1</td> <td align="center">53.0</td> <td align="center">60.9</td> <td align="center">63.6</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-o-2.6</td> <td align="center">8.7B</td> <td align="center">71.9</td> <td align="center">56.7</td> <td align="center">63.9</td> <td align="center">69.6</td> </tr> <tr> <td nowrap="nowrap" align="left">MiniCPM-V-4.0</td> <td align="center">4.1B</td> <td align="center">71.4</td> <td align="center">54.0</td> <td align="center">61.2</td> <td align="center">65.8</td> </tr> </tbody> </table> </div> </details>

Examples <!-- omit in toc -->

<div style="display: flex; flex-direction: column; align-items: center;"> <img src="./assets/minicpmv4/minicpm-v-4-case.png" alt="math" style="margin-bottom: 5px;"> </div>

We deploy MiniCPM-V 4.0 on iPhone 16 Pro Max with iOS demo. The demo video is the raw screen recording without edition.

<table align="center"> <p align="center"> <img src="./assets/minicpmv4/iphone_en.gif" width=45%/> &nbsp;&nbsp;&nbsp;&nbsp; <img src="./assets/minicpmv4/iphone_en_information_extraction.gif" width=45%/> </p> <p align="center"> <img src="./assets/minicpmv4/iphone_cn.gif" width=45%/> &nbsp;&nbsp;&nbsp;&nbsp; <img src="./assets/minicpmv4/iphone_cn_funny_points.gif" width=45%/> </p> </table> </details>

Legacy Models <!-- omit in toc -->

ModelIntroduction and Guidance
MiniCPM-V 4.5Document
MiniCPM-o 2.6Document
MiniCPM-V 2.6Document
MiniCPM-Llama3-V 2.5Document
MiniCPM-V 2.0Document
MiniCPM-V 1.0Document
OmniLMM-12BDocument

MiniCPM-V & o Cookbook

Discover comprehensive, ready-to-deploy solutions for the MiniCPM-V and MiniCPM-o model series in our structured Cookbook, which empowers developers to rapidly implement multimodal AI applications with integrated vision, speech, and live-streaming capabilities. Key features include:

Easy Usage Documentation

Our comprehensive documentation website presents every recipe in a clear, well-organized manner. All features are displayed at a glance, making it easy for you to quickly find exactly what you need.

Broad User Spectrum

We support a wide range of users, from individuals to enterprises and researchers.

  • Individuals: Enjoy effortless inference using Ollama (V4, o4.5) and Llama.cpp (V4, o4.5) with minimal setup.
  • Enterprises: Achieve high-throughput, scalable performance with vLLM (V4, o4.5) and SGLang (V4, o4.5).
  • Researchers: Leverage advanced frameworks including Transformers, LLaMA-Factory, SWIFT, and Align-anything to enable flexible model development and cutting-edge experimentation.

Versatile Deployment Scenarios

Our ecosystem delivers optimal solution for a variety of hardware environments and deployment demands.

  • Web Demo: Full-duplex real-time video interaction solution with high responsiveness and low latency. WebRTC_Demo.
  • Quantized deployment: Maximize efficiency and minimize resource consumption using GGUF and BNB.
  • End devices: Bring powerful AI experiences to iPhone and iPad, supporting offline and privacy-sensitive applications.

Model Zoo

ModelDeviceMemory         DescriptionDownload
MiniCPM-o 4.5GPU19 GBThe latest version, strong end-side multimodal performance for vision, speech and omni-modal live streaming on end-side devices.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-o 4.5 ggufGPU10 GBThe gguf version, lower memory usage and faster inference.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-o 4.5 AWQGPU11 GBThe AWQ quantized version, lower GPU memory usage.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-V 4.0GPU9 GBThe latest version, strong end-side multimodal performance for single image, multi-image and video understanding.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-V 4.0 ggufCPU4 GBThe gguf version, lower memory usage and faster inference.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-V 4.0 int4GPU5 GBThe int4 quantized version, lower GPU memory usage.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>
MiniCPM-V 4.0 AWQGPU5 GBThe AWQ quantized version, lower GPU memory usage.🤗    <img src="./assets/modelscope_logo.png" width="20px"></img>

Local Interactive Demo

We provide ready-to-run guidance to access the low-latency full-duplex communication directly on your own Mac using our new official Docker image.

Inference with Transformers

Inference using Hugging Face Transformers on NVIDIA GPUs. Please ensure transformers==4.51.0 is installed, as other versions may have compatibility issues (under investigation). Requirements tested on Python 3.10:

  • Without TTS or streaming inference:
pip install "transformers==4.51.0" accelerate "torch>=2.3.0,<=2.8.0" "torchaudio<=2.8.0" "minicpmo-utils>=1.0.5"
  • With TTS or streaming inference:
pip install "transformers==4.51.0" accelerate "torch>=2.3.0,<=2.8.0" "torchaudio<=2.8.0" "minicpmo-utils[all]>=1.0.5"
<details> <summary>Click to show FFmpeg installation instructions (optional).</summary>

Note: FFmpeg is required for video frame extraction (get_video_frame_audio_segments with use_ffmpeg=True) and video generation (generate_duplex_video). For more information, visit the official FFmpeg website.

macOS (Homebrew):

brew install ffmpeg

Ubuntu/Debian:

sudo apt update && sudo apt install ffmpeg

Verify installation:

ffmpeg -version
</details>

Model Initialization

<details> <summary>Click to show model initialization code.</summary>
import torch
from transformers import AutoModel

# Load omni model (default: init_vision=True, init_audio=True, init_tts=True)
# For vision-only model: set init_audio=False and init_tts=False
# For audio-only model: set init_vision=False
model = AutoModel.from_pretrained(
    "openbmb/MiniCPM-o-4_5",
    trust_remote_code=True,
    attn_implementation="sdpa", # sdpa or flash_attention_2
    torch_dtype=torch.bfloat16,
    init_vision=True,
    init_audio=True,
    init_tts=True,
)
model.eval().cuda()

# Initialize TTS for audio output
model.init_tts()

# Convert simplex model to duplex mode
duplex_model = model.as_duplex()

# Convert duplex model back to simplex mode
simplex_model = duplex_model.as_simplex(reset_session=True)
</details>

Duplex Omni Mode

Full-duplex streaming inference for real-time or recorded video conversations.

<details> <summary>Click to show duplex omni mode code.</summary>
import librosa
import torch
from minicpmo.utils import generate_duplex_video, get_video_frame_audio_segments
from transformers import AutoModel

# Load model and convert to duplex mode
model = AutoModel.from_pretrained(
    "openbmb/MiniCPM-o-4_5",
    trust_remote_code=True,
    attn_implementation="sdpa",  # or "flash_attention_2"
    torch_dtype=torch.bfloat16,
)
model.eval().cuda()
model = model.as_duplex()

# Load video and reference audio
video_path = "assets/omni_duplex1.mp4"
ref_audio_path = "assets/HT_ref_audio.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)

# Extract video frames and audio segments
video_frames, audio_segments, stacked_frames = get_video_frame_audio_segments(
    video_path, stack_frames=1, use_ffmpeg=True, adjust_audio_length=True
)

# Prepare duplex session with system prompt and voice reference
model.prepare(
    prefix_system_prompt="Streaming Omni Conversation.",
    ref_audio=ref_audio,
    prompt_wav_path=ref_audio_path,
)

results_log = []
timed_output_audio = []

# Process each chunk in streaming fashion
for chunk_idx in range(len(audio_segments)):
    audio_chunk = audio_segments[chunk_idx] if chunk_idx < len(audio_segments) else None
    frame = video_frames[chunk_idx] if chunk_idx < len(video_frames) else None
    frame_list = []
    if frame is not None:
        frame_list.append(frame)
        if stacked_frames is not None and chunk_idx < len(stacked_frames) and stacked_frames[chunk_idx] is not None:
            frame_list.append(stacked_frames[chunk_idx])

    # Step 1: Streaming prefill
    model.streaming_prefill(
        audio_waveform=audio_chunk,
        frame_list=frame_list,
        max_slice_nums=1,  # Increase for HD mode (e.g., [2, 1] for stacked frames)
        batch_vision_feed=False,  # Set True for faster processing
    )

    # Step 2: Streaming generate
    result = model.streaming_generate(
        prompt_wav_path=ref_audio_path,
        max_new_speak_tokens_per_chunk=20,
        decode_mode="sampling",
    )

    if result["audio_waveform"] is not None:
        timed_output_audio.append((chunk_idx, result["audio_waveform"]))

    chunk_result = {
        "chunk_idx": chunk_idx,
        "is_listen": result["is_listen"],
        "text": result["text"],
        "end_of_turn": result["end_of_turn"],
        "current_time": result["current_time"],
        "audio_length": len(result["audio_waveform"]) if result["audio_waveform"] is not None else 0,
    }
    results_log.append(chunk_result)
    
    print("listen..." if result["is_listen"] else f"speak> {result['text']}")

# Generate output video with AI responses
# Please install Chinese fonts (fonts-noto-cjk or fonts-wqy-microhei) to render CJK subtitles correctly.
# apt-get install -y fonts-noto-cjk fonts-wqy-microhei
# fc-cache -fv
generate_duplex_video(
    video_path=video_path,
    output_video_path="duplex_output.mp4",
    results_log=results_log,
    timed_output_audio=timed_output_audio,
    output_sample_rate=24000,
)
</details>

Simplex Omni Mode

We provide two inference modes: chat and streaming.

Chat Inference <!-- omit in toc -->

<details> <summary>Click to show chat inference code.</summary>
from minicpmo.utils import get_video_frame_audio_segments

model = ...
model.init_tts()

video_path = "assets/Skiing.mp4"

# Optional: Set reference audio for voice cloning
ref_audio_path = "assets/HT_ref_audio.wav"
sys_msg = model.get_sys_prompt(ref_audio=ref_audio_path, mode="omni", language="en")

# Use stack_frames=5 for high refresh rate mode
video_frames, audio_segments, stacked_frames = get_video_frame_audio_segments(video_path, stack_frames=1)
omni_contents = []
for i in range(len(video_frames)):
    omni_contents.append(video_frames[i])
    omni_contents.append(audio_segments[i])
    if stacked_frames is not None and stacked_frames[i] is not None:
        omni_contents.append(stacked_frames[i])

msg = {"role": "user", "content": omni_contents}
msgs = [sys_msg, msg]

# Set generate_audio=True and output_audio_path to save TTS output
generate_audio = True
output_audio_path = "output.wav"

res = model.chat(
    msgs=msgs,
    max_new_tokens=4096,
    do_sample=True,
    temperature=0.7,
    use_tts_template=True,
    enable_thinking=False,
    omni_mode=True,  # Required for omni inference
    generate_audio=generate_audio,
    output_audio_path=output_audio_path,
    max_slice_nums=1,  # Increase for HD mode
)
print(res)

# Example output: "The person in the picture is skiing down a snowy mountain slope."
# import IPython
# IPython.display.Audio("output.wav")
</details>

Streaming Inference <!-- omit in toc -->

<details> <summary>Click to show streaming inference code.</summary>
import librosa
import numpy as np
import soundfile as sf
import torch
from minicpmo.utils import get_video_frame_audio_segments

model = ...
model.init_tts()

# Reset session for a new conversation (clears KV cache)
model.reset_session()

# Optional: Load reference audio for voice cloning
ref_audio_path = "assets/HT_ref_audio.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
model.init_token2wav_cache(ref_audio)

session_id = "demo"

# Extract video frames and audio segments (use stack_frames=5 for high refresh rate mode)
video_path = "assets/Skiing.mp4"
video_frames, audio_segments, stacked_frames = get_video_frame_audio_segments(video_path, stack_frames=1)

# Build omni contents list
omni_contents = []
for i in range(len(video_frames)):
    omni_contents.append(video_frames[i])
    omni_contents.append(audio_segments[i])
    if stacked_frames is not None and stacked_frames[i] is not None:
        omni_contents.append(stacked_frames[i])

generate_audio = False
output_audio_path = "output.wav"

# Step 1: Prefill system prompt
sys_msg = model.get_sys_prompt(ref_audio=ref_audio, mode="omni", language="en")
model.streaming_prefill(session_id=session_id, msgs=[sys_msg])

# Step 2: Prefill omni chunks (is_last_chunk=True only for the last audio chunk)
audio_indices = [i for i, c in enumerate(omni_contents) if isinstance(c, np.ndarray)]
last_audio_idx = audio_indices[-1] if audio_indices else -1

for idx, content in enumerate(omni_contents):
    is_last_audio_chunk = idx == last_audio_idx
    msgs = [{"role": "user", "content": [content]}]
    model.streaming_prefill(session_id=session_id, msgs=msgs, omni_mode=True, is_last_chunk=is_last_audio_chunk)

# Step 3: Generate response
iter_gen = model.streaming_generate(
    session_id=session_id,
    generate_audio=generate_audio,
    use_tts_template=True,
    enable_thinking=False,
    do_sample=True,
)

audios = []
text = ""

if generate_audio:
    for wav_chunk, text_chunk in iter_gen:
        audios.append(wav_chunk)
        text += text_chunk

    generated_waveform = torch.cat(audios, dim=-1)[0]
    sf.write(output_audio_path, generated_waveform.cpu().numpy(), samplerate=24000)

    print("Text:", text)
    print("Audio saved to output.wav")
else:
    for text_chunk, is_finished in iter_gen:
        text += text_chunk
    print("Text:", text)
</details>

Simplex Realtime Speech Conversation Mode

<details> <summary>Click to show simplex mode realtime speech conversation API usage.</summary>

First, make sure you have all dependencies, especially "minicpmo-utils[all]>=1.0.5":

pip install "transformers==4.51.0" accelerate "torch>=2.3.0,<=2.8.0" "torchaudio<=2.8.0" "minicpmo-utils[all]>=1.0.5"
import librosa
import numpy as np
import torch
import soundfile as sf

model = ...

# Set reference audio for voice style
ref_audio_path = "ref_audio_path"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)

# Example system msg for English Conversation
sys_msg = {
  "role": "system",
  "content": [
    "Clone the voice in the provided audio prompt.",
    ref_audio,
    "Please assist users while maintaining this voice style. Please answer the user's questions seriously and in a high quality. Please chat with the user in a highly human-like and oral style. You are a helpful assistant developed by ModelBest: MiniCPM-Omni"
  ]
}

# Example system msg for Chinese Conversation
sys_msg = {
  "role": "system",
  "content": [
    "模仿输入音频中的声音特征。",
    ref_audio,
    "你的任务是用这种声音模式来当一个助手。请认真、高质量地回复用户的问题。请用高自然度的方式和用户聊天。你是由面壁智能开发的人工智能助手:面壁小钢炮。"
  ]
}

# You can use each type of system prompt mentioned above in streaming speech conversation

# Reset state
model.init_tts()
model.reset_session(reset_token2wav_cache=True)
model.init_token2wav_cache(prompt_speech_16k=ref_audio)

session_id = "demo"

# First, prefill system turn
model.streaming_prefill(
    session_id=session_id,
    msgs=[sys_msg],
    omni_mode=False,
    is_last_chunk=True,
)

# Here we simulate realtime speech conversation by splitting whole user input audio into chunks of 1s.
user_audio, _ = librosa.load("user_audio.wav", sr=16000, mono=True)

IN_SAMPLE_RATE = 16000 # input audio sample rate, fixed value
CHUNK_SAMPLES = IN_SAMPLE_RATE # sample
OUT_SAMPLE_RATE = 24000 # output audio sample rate, fixed value
MIN_AUDIO_SAMPLES = 16000

total_samples = len(user_audio)
num_chunks = (total_samples + CHUNK_SAMPLES - 1) // CHUNK_SAMPLES

for chunk_idx in range(num_chunks):
    start = chunk_idx * CHUNK_SAMPLES
    end = min((chunk_idx + 1) * CHUNK_SAMPLES, total_samples)
    chunk_audio = user_audio[start:end]
    
    is_last_chunk = (chunk_idx == num_chunks - 1)
    if is_last_chunk and len(chunk_audio) < MIN_AUDIO_SAMPLES:
        chunk_audio = np.concatenate([chunk_audio, np.zeros(MIN_AUDIO_SAMPLES - len(chunk_audio), dtype=chunk_audio.dtype)])

    user_msg = {"role": "user", "content": [chunk_audio]}
    
    # For each 1s audio chunk, perform streaming_prefill once to reduce first-token latency
    model.streaming_prefill(
        session_id=session_id,
        msgs=[user_msg],
        omni_mode=False,
        is_last_chunk=is_last_chunk,
    )


# Let model generate response in a streaming manner
generate_audio = True
iter_gen = model.streaming_generate(
    session_id=session_id,
    generate_audio=generate_audio,
    use_tts_template=True,
    enable_thinking=False,
    do_sample=True,
    max_new_tokens=512,
    length_penalty=1.1, # For realtime speech conversation mode, we suggest length_penalty=1.1 to improve response content
)

audios = []
text = ""

output_audio_path = ...
if generate_audio:
    for wav_chunk, text_chunk in iter_gen:
        audios.append(wav_chunk)
        text += text_chunk

    generated_waveform = torch.cat(audios, dim=-1)[0]
    sf.write(output_audio_path, generated_waveform.cpu().numpy(), samplerate=24000)

    print("Text:", text)
    print("Audio saved to output.wav")
else:
    for text_chunk, is_finished in iter_gen:
        text += text_chunk
    print("Text:", text)

# Now we can prefill the following user turns and generate next turn response...

</details>

Speech Conversation as a Versatile and Vibe AI Assistant <!-- omit in toc -->

Built on carefully designed post-training data and professional voice-actor recordings, MiniCPM-o-4.5 can also function as an AI voice assistant. It delivers high-quality spoken interaction out of the box. It produces a sweet and expressive voice with natural prosody, including appropriate rhythm, stress, and pauses, giving a strong sense of liveliness in casual conversation. It also supports storytelling and narrative speech with coherent and engaging delivery. Moreover, it enables advanced voice instruction control. like emotional tone, word-level emphasis.

<details> <summary>Click to show AI assistant conversation code.</summary>
import librosa

# Set reference audio for voice style
ref_audio_path = "assets/HT_ref_audio.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)

# For Chinese Conversation
sys_msg = {
  "role": "system",
  "content": [
    "模仿输入音频中的声音特征。",
    ref_audio,
    "你的任务是用这种声音模式来当一个助手。请认真、高质量地回复用户的问题。请用高自然度的方式和用户聊天。你是由面壁智能开发的人工智能助手:面壁小钢炮。"
  ]
}

# For English Conversation
sys_msg = {
  "role": "system",
  "content": [
    "Clone the voice in the provided audio prompt.",
    ref_audio,
    "Please assist users while maintaining this voice style. Please answer the user's questions seriously and in a high quality. Please chat with the user in a highly human-like and oral style. You are a helpful assistant developed by ModelBest: MiniCPM-Omni."
  ]
}
</details>

General Speech Conversation with Custom Voice and Custom System Profile <!-- omit in toc -->

MiniCPM-o-4.5 can role-play as a specific character based on an audio prompt and text profile prompt. It mimics the character's voice and adopts their language style in text responses. It also follows profile defined in text profile. In this mode, MiniCPM-o-4.5 sounds more natural and human-like.

<details> <summary>Click to show custom voice conversation code.</summary>
import librosa

# Set reference audio for voice cloning
ref_audio_path = "assets/system_ref_audio.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)

# For English conversation with text profile
sys_msg = {
  "role": "system",
  "content": [
    "Clone the voice in the provided audio prompt.",
    ref_audio,
    "Please chat with the user in a highly human-like and oral style." + "You are Elon Musk, CEO of Tesla and SpaceX. You speak directly and casually, often with dry humor. You're passionate about Mars, sustainable energy, and pushing humanity forward. Speak bluntly with occasional dark humor. Use simple logic and don't sugarcoat things. Don't be diplomatic. Say what you actually think, even if it's controversial. Keep responses around 100 words. Don't ramble."
  ]
}


# For English conversation with no text profile
sys_msg = {
  "role": "system",
  "content": [
    "Clone the voice in the provided audio prompt.",
    ref_audio,
    "Your task is to be a helpful assistant using this voice pattern. Please answer the user's questions seriously and in a high quality. Please chat with the user in a high naturalness style."
  ]
}

# For Chinese Conversation with no text profile
sys_msg = {
  "role": "system",
  "content": [
    "根据输入的音频提示生成相似的语音。",
    librosa.load("assets/system_ref_audio_2.wav", sr=16000, mono=True)[0],
    "作为助手,你将使用这种声音风格说话。 请认真、高质量地回复用户的问题。 请用高自然度的方式和用户聊天。"
  ]
}

# For Chinese Conversation with text profile
sys_msg = {
  "role": "system",
  "content": [
    "根据输入的音频提示生成相似的语音。",
    ref_audio,
    "你是一个具有以上声音风格的AI助手。请用高拟人度、口语化的方式和用户聊天。" + "你是一名心理咨询师兼播客主理人,热爱创作与深度对话。你性格细腻、富有共情力,善于从个人经历中提炼哲思。语言风格兼具理性与诗意,常以隐喻表达内在体验。"
  ]
}

</details>

Speech and Audio Mode

Zero-shot Text-to-speech (TTS) <!-- omit in toc -->

MiniCPM-o-4.5 supports zero-shot text-to-speech (TTS). In this mode, the model functions as a highly-natural TTS system that can replicate a reference voice.

<details> <summary>Click to show TTS code.</summary>
import librosa

model = ...
model.init_tts()

# For both Chinese and English
ref_audio_path = "assets/HT_ref_audio.wav"
ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
sys_msg = {"role": "system", "content": [
  "模仿音频样本的音色并生成新的内容。",
  ref_audio,
  "请用这种声音风格来为用户提供帮助。 直接作答,不要有冗余内容"
]}

# For English
user_msg = {
  "role": "user",
  "content": [
    "请朗读以下内容。" + " " + "I have a wrap up that I want to offer you now, a conclusion to our work together."
  ]
}

# For Chinese
user_msg = {
  "role": "user",
  "content": [
    "请朗读以下内容。" + " " + "你好,欢迎来到艾米说科幻,我是艾米。"
  ]
}

msgs = [sys_msg, user_msg]
res = model.chat(
    msgs=msgs,
    do_sample=True,
    max_new_tokens=512,
    use_tts_template=True,
    generate_audio=True,
    temperature=0.1,
    output_audio_path="result_voice_cloning.wav",
)
</details>

Mimick <!-- omit in toc -->

The Mimick task evaluates a model's end-to-end speech modeling capability. The model takes audio input, transcribes it, and reconstructs the original audio with high fidelity, preserving detailed acoustic, paralinguistic, and semantic information. Higher similarity between the reconstructed and original audio indicates stronger end-to-end speech modeling capability.

<details> <summary>Click to show mimick code.</summary>
import librosa

model = ...
model.init_tts()

system_prompt = "You are a helpful assistant. You can accept video, audio, and text input and output voice and text. Respond with just the answer, no redundancy."

mimick_prompt = "Please repeat the following speech in the appropriate language."

audio_input, _ = librosa.load("assets/Trump_WEF_2018_10s.mp3", sr=16000, mono=True)

msgs = [
    {"role": "system", "content": [system_prompt]},
    {"role": "user", "content": [mimick_prompt, audio_input]}
  ]

res = model.chat(
    msgs=msgs,
    do_sample=True,
    max_new_tokens=512,
    use_tts_template=True,
    temperature=0.1,
    generate_audio=True,
    output_audio_path="output_mimick.wav",
)
</details>

Addressing Various Audio Understanding Tasks <!-- omit in toc -->

MiniCPM-o-4.5 can also handle various audio understanding tasks, such as ASR, speaker analysis, general audio captioning, and sound scene tagging.

For audio-to-text tasks, you can use the following prompts:

  • ASR (Chinese, or AST EN→ZH): 请仔细听这段音频片段,并将其内容逐字记录。
  • ASR (English, or AST ZH→EN): Please listen to the audio snippet carefully and transcribe the content.
  • Speaker Analysis: Based on the speaker's content, speculate on their gender, condition, age range, and health status.
  • General Audio Caption: Summarize the main content of the audio.
  • Sound Scene Tagging: Utilize one keyword to convey the audio's content or the associated scene.
<details> <summary>Click to show audio understanding code.</summary>
import librosa

model = ...
model.init_tts()

# Load the audio to be transcribed/analyzed
audio_input, _ = librosa.load("assets/Trump_WEF_2018_10s.mp3", sr=16000, mono=True)

# Choose a task prompt (see above for options)
task_prompt = "Please listen to the audio snippet carefully and transcribe the content.\n"
msgs = [{"role": "user", "content": [task_prompt, audio_input]}]

res = model.chat(
    msgs=msgs,
    do_sample=True,
    max_new_tokens=512,
    use_tts_template=True,
    generate_audio=True,
    temperature=0.3,
    output_audio_path="result_audio_understanding.wav",
)
print(res)
</details>

Visual Understanding

MiniCPM-o-4.5 shares the same inference methods as MiniCPM-V-4.5.

Chat with Single Image <!-- omit in toc -->

<details> <summary>Click to show single image chat code.</summary>
import torch
from PIL import Image
from transformers import AutoModel

model = AutoModel.from_pretrained(
    "openbmb/MiniCPM-o-4_5",
    trust_remote_code=True,
    attn_implementation="sdpa",  # or "flash_attention_2"
    torch_dtype=torch.bfloat16,
    init_vision=True,
    init_audio=False,
    init_tts=False,
)
model.eval().cuda()

image = Image.open("assets/fossil.png").convert("RGB")
question = "What is in the image?"
msgs = [{"role": "user", "content": [image, question]}]

res = model.chat(msgs=msgs, use_tts_template=False)
print(res)
</details>

Chat with Multiple Images <!-- omit in toc -->

<details> <summary>Click to show Python code for multi-image input.</summary>
import torch
from PIL import Image
from transformers import AutoModel

model = ...

image1 = Image.open("assets/highway.png").convert("RGB")
image2 = Image.open("assets/fossil.png").convert("RGB")
question = "Compare image 1 and image 2, tell me about the differences between them."
msgs = [{"role": "user", "content": [image1, image2, question]}]

answer = model.chat(msgs=msgs, use_tts_template=False, enable_thinking=False)
print(answer)
</details>

In-Context Few-Shot Learning <!-- omit in toc -->

<details> <summary>Click to show Python code for few-shot learning.</summary>
from PIL import Image

model = ...

question = "production date"
image1 = Image.open("example1.jpg").convert("RGB")
answer1 = "2023.08.04"
image2 = Image.open("example2.jpg").convert("RGB")
answer2 = "2007.04.24"
image_test = Image.open("test.jpg").convert("RGB")

msgs = [
    {"role": "user", "content": [image1, question]},
    {"role": "assistant", "content": [answer1]},
    {"role": "user", "content": [image2, question]},
    {"role": "assistant", "content": [answer2]},
    {"role": "user", "content": [image_test, question]},
]

answer = model.chat(msgs=msgs, use_tts_template=False, enable_thinking=False)
print(answer)
</details>

Chat with Video <!-- omit in toc -->

<details> <summary>Click to show Python code for video input.</summary>
import torch
from minicpmo.utils import get_video_frame_audio_segments
from transformers import AutoModel

model = ...

video_path = "assets/Skiing.mp4"
video_frames, _, _ = get_video_frame_audio_segments(video_path)
print("num frames:", len(video_frames))

question = "Describe the video"
msgs = [{"role": "user", "content": video_frames + [question]}]

answer = model.chat(
    msgs=msgs,
    max_new_tokens=128,
    use_image_id=False,
    max_slice_nums=1,
    use_tts_template=False,
    enable_thinking=False,  # Set True to enable thinking mode
)
print(answer)
</details>

Structured Content Input

<details> <summary>Click to show structured content input details.</summary>

The chat method accepts message content in two formats:

Native format – pass Python objects directly:

msgs = [{"role": "user", "content": [pil_image, audio_ndarray, "Describe this."]}]

OpenAI-compatible format – use structured dictionaries:

msgs = [
    {
        "role": "user",
        "content": [
            {"type": "image_url", "image_url": {"url": "/path/to/image.jpg"}},
            {"type": "audio_url", "audio_url": {"url": "/path/to/audio.wav"}},
            {"type": "video_url", "video_url": {"url": "/path/to/video.mp4", "use_audio": True}},
            {"type": "text", "text": "Describe this."}
        ]
    }
]

Supported types:

TypeInputConverts to
text{"type": "text", "text": "..."}str
image_url{"type": "image_url", "image_url": {"url": "..."}}PIL.Image
audio_url{"type": "audio_url", "audio_url": {"url": "..."}}np.ndarray (16kHz mono)
video_url{"type": "video_url", "video_url": {"url": "...", "stack_frames": 1, "use_audio": True}}List[Image, ndarray, ...]
  • URL sources: local file paths or http:///https:// URLs
  • Mixed formats: native objects and structured dicts can be combined in the same content list
</details>

Supported Frameworks

FlagOS

To enable large-scale deployment across different AI chips, Beijing Zhiyuan Research Institute, together with numerous research institutions, chip manufacturers, system vendors, and algorithm and software organizations both domestically and internationally, jointly initiated and established the FlagOS Open Source Community.

The FlagOS community is dedicated to building a unified, open-source system software stack for various AI chips, encompassing core open-source projects such as a large-scale operator library, a unified AI compiler, parallel training and inference frameworks, and a unified communication library. It aims to create an open technology ecosystem connecting the “model-system-chip” layers. By enabling “develop once, deploy across chips”, FlagOS unlocks the computational potential of hardware, breaks down the ecosystem silos between different chip software stacks, and effectively reduces migration costs for developers. The FlagOS community fosters an AI hardware and software ecosystem, overcomes single-vendor closed-source monopolies, promotes widespread deployment of AI hardware technologies, and is committed to rooted in China while embracing global collaboration. Official website: https://flagos.io.

<details> <summary>Click to show FlagOS details.</summary>

FlagOS: Supporting Multiple AI Chips <!-- omit in toc -->

Thanks to FlagOS’s unified multi-chip AI system software stack, MiniCPM-o 4.5 was adapted to 6 different AI chips in an extremely short time. Currently, the multi-chip version of MiniCPM-o 4.5 has been released on FlagRelease, FlagOS’s platform for automatic migration, adaptation, and deployment of large models across multi-architecture AI chips. Details are as follows:

VendorModelScopeHuggingface
NvidiaMiniCPM-o-4.5-nvidia-FlagOSMiniCPM-o-4.5-nvidia-FlagOS
Hygon-BW1000MiniCPM-o-4.5-hygon-FlagOSMiniCPM-o-4.5-hygon-FlagOS
Metax-C550MiniCPM-o-4.5-metax-FlagOSMiniCPM-o-4.5-metax-FlagOS
Iluvatar-BIV150MiniCPM-o-4.5-iluvatar-FlagOSMiniCPM-o-4.5-iluvatar-FlagOS
Ascend-A3MiniCPM-o-4.5-ascend-FlagOSMiniCPM-o-4.5-ascend-FlagOS
Zhenwu-810EMiniCPM-o-4.5-zhenwu-FlagOSMiniCPM-o-4.5-zhenwu-FlagOS
Comprehensive Evaluation <!-- omit in toc -->
Transformers-FlagOS version <!-- omit in toc -->

Accuracy Difference between USE_FLAGOS=1 on multi-backend and USE_FLAGOS=0 on Nvidia-CUDA

MetricsFlagOS BackendDifference with Nvidia-CUDA
Video-MME 0-shot avg@1 ↑Nvidia0.33%
Video-MME 0-shot avg@1 ↑Hygon-BW10000.17%
Video-MME 0-shot avg@1 ↑Ascend-A30.50%
Video-MME 0-shot avg@1 ↑Iluvatar-BIV1501.83%
Video-MME 0-shot avg@1 ↑Metax-C5500.75%
VLLM-FlagOS version <!-- omit in toc -->

Accuracy Difference between USE_FLAGGEMS=1 FLAGCX_PATH=/workspace/FlagCX on Nvidia or USE_FLAGGEMS=1 on ZHENW 810E, and launching vllm server directly on Nvidia

Metrics (avg@1)Difference between Nvidia-FlagOS and Nvidia-CUDADifference between Zhenwu-FlagOS and Nvidia-CUDA
CMMMU ↑0.72%3.5%
MMMU ↑1.44%1.18%
MMMU_Pro_standard ↑0.83%0.22%
MM-Vet v2 ↑0.46%1.33%
OCRBench ↑0.10%1%
CII-Bench ↑0.40%0.13%
Blink ↑1.90%2.19%

FlagOS Usage <!-- omit in toc -->

FlagOS Performance Acceleration on Nvidia <!-- omit in toc -->

On the Transformers version, under the premise of precision alignment between the CUDA and FlagOS ecosystems, FlagOS achieves a 6% performance improvement in total task execution time compared to CUDA.

From FlagRelease【Recommendation】 <!-- omit in toc -->

FlagRelease is a platform developed by the FlagOS team for automatic migration, adaptation, and deployment of large models across multi-architecture AI chips. The multi-chip version of MiniCPM-o 4.5 has already been released on FlagRelease. All necessary software packages are pre-installed on the platform, so users do not need to install anything.

From Scratch <!-- omit in toc -->
  • Dependencies: Python 3.12, GLIBC 2.39, GLIBCXX 3.4.33, CXXABI 1.3.15
Transformers <!-- omit in toc -->
  • Installing the FlagOS Operator Library

    Official Repository: https://github.com/flagos-ai/FlagGems

    pip install flag-gems==4.2.1rc0
    
  • Installing the FlagOS Compiler

    Official Repository: https://github.com/flagos-ai/flagtree

    Quick Reference for Core Dependency Versions: https://github.com/flagos-ai/FlagTree/blob/main/documents/build.md#tips-for-building

    pip uninstall triton
    
    python3 -m pip install flagtree==0.4.0+3.5 --index-url=https://resource.flagos.net/repository/flagos-pypi-hosted/simple --trusted-host=https://resource.flagos.net
    
  • Activating Acceleration

    Add USE_FLAGOS=1 before the command for the task you want to run. For example, when you run:

    python3 generate_speech_from_video.py
    

    To use the MiniCPM-o-4.5 model to generate spoken responses from video content, you can:

    USE_FLAGOS=1 python3 generate_speech_from_video.py
    

    to accelerate this process with FlagOS.

Vllm Version <!-- omit in toc -->
  • Installing the FlagOS Operator Library

    Official Repository: https://github.com/flagos-ai/FlagGems

    pip install flag-gems==4.2.1rc0
    pip install triton==3.5.1
    
  • Activating Acceleration

    Add USE_FLAGOS=1 before the command for the task you want to run. For example, when you run:

    vllm serve ${model_path} --dtype auto  --gpu_memory_utilization 0.9 --trust-remote-code --max-num-batched-tokens 2048 --served-model-name cpmo --port ${Port}
    

    To start the MiniCPM-o-4.5 server, you can:

    USE_FLAGOS=1 vllm serve ${model_path} --dtype auto  --gpu_memory_utilization 0.9 --trust-remote-code --max-num-batched-tokens 2048 --served-model-name cpmo --port ${Port}
    

    to accelerate this process with FlagOS.

Using FlagOS Unified Multi-Chip Backend Plugin <!-- omit in toc -->

vllm-plugin-FL is a plugin built for the vLLM inference/service framework. Developed on top of FlagOS’s unified multi-chip backend, it is designed to extend vLLM’s capabilities and performance across a variety of hardware environments.

Using vllm-plugin-FL <!-- omit in toc -->
VendorFrom ScratchFrom FlagRelease
Nvidiavllm-plugin-FL/MiniCPM-o-4.5MiniCPM-o-4.5-ModelScope, MiniCPM-o-4.5-HuggingFace
</details>

vLLM, SGLang, llama.cpp, Ollama

We support inference with vLLM, SGLang, llama.cpp and Ollama. Refer to our Cookbook for more details.

LLaMA-Factory, SWIFT

We support fine-tuning with LLaMA-Factory, SWIFT. Refer to our Cookbook for more details.

Awesome work using MiniCPM-V & MiniCPM-o

  • text-extract-api: Document extraction API using OCRs and Ollama supported models GitHub Repo stars
  • comfyui_LLM_party: Build LLM workflows and integrate into existing image workflows GitHub Repo stars
  • Ollama-OCR: OCR package uses vlms through Ollama to extract text from images and PDF GitHub Repo stars
  • comfyui-mixlab-nodes: ComfyUI node suite supports Workflow-to-APP、GPT&3D and more GitHub Repo stars
  • OpenAvatarChat: Interactive digital human conversation implementation on single PC GitHub Repo stars
  • pensieve: A privacy-focused passive recording project by recording screen content GitHub Repo stars
  • paperless-gpt: Use LLMs to handle paperless-ngx, AI-powered titles, tags and OCR GitHub Repo stars
  • Neuro: A recreation of Neuro-Sama, but running on local models on consumer hardware GitHub Repo stars

Limitations

As an experimental trial, we find MiniCPM-o 4.5 has notable limitations worth further investigation and improvement.

  • Foundation Capability. The full-duplex omni-modality live streaminig capability still needs improvement in its foundation capability.
  • Unstable Speech Output in Omni Mode. Speech synthesis can mispronounce characters in full-duplex omni-modal live streaminig mode.
  • Mixed Language. The model can sometimes respond with mixed English and Chinese in speech and omni mode.
  • High-latency on Web Demo. Users may experience unusual high-latency or even miss part of model output fragments when using our web demo hosted on overseas servers. We recommend deploying the demo locally or with good network connections.

Model License <!-- omit in toc -->

  • The MiniCPM-o/V model weights and code are open-sourced under the Apache-2.0 license.

  • To help us better understand and support our users, we would deeply appreciate it if you could consider optionally filling out a brief registration "questionnaire".

Statement <!-- omit in toc -->

As MLLMs, MiniCPM-o/V models generate content by learning a large number of multimodal corpora, but they cannot comprehend, express personal opinions, or make value judgements. Anything generated by MiniCPM-o/V models does not represent the views and positions of the model developers

We will not be liable for any problems arising from the use of MiniCPM-o/V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination, or misuse of the model.

Acknowledgements

We would like to thank the following projects:

Institutions <!-- omit in toc -->

This project is developed by the following institutions:

  • <img src="assets/thunlp.png" width="28px"> THUNLP
  • <img src="assets/modelbest.png" width="28px"> ModelBest

🌟 Star History <!-- omit in toc -->

<table align="center"> <p align="center"> <img src="assets/star-history-25-09-02.png"/> </p> </table> <!-- <picture> <source media="(prefers-color-scheme: dark)" srcset=" https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-o&type=Date&theme=dark " /> <source media="(prefers-color-scheme: light)" srcset=" https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-o&type=Date " /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-o&type=Date" /> </picture> -->

Key Techniques and Other Multimodal Projects <!-- omit in toc -->

👏 Welcome to explore key techniques of MiniCPM-o/V and other multimodal projects of our team:

VisCPM | RLPR | RLHF-V | LLaVA-UHD | RLAIF-V

Citation <!-- omit in toc -->

If you find our model/code/paper helpful, please consider citing our papers 📝 and staring us ⭐️!

@article{yao2024minicpm,
  title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
  author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others},
  journal={arXiv preprint arXiv:2408.01800},
  year={2024}
}