databendlabs / databend
Data Agent Ready Warehouse : One for Analytics, Search, AI, Python Sandbox. — rebuilt from scratch. Unified architecture on your S3.
AI Architecture Analysis
This repository is indexed by RepoMind. By analyzing databendlabs/databend in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.
Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.
Repository Summary (README)
Preview<a href="https://databend.com/">☁️ Try Cloud</a> • <a href="#-quick-start">🚀 Quick Start</a> • <a href="https://docs.databend.com/">📖 Documentation</a> • <a href="https://link.databend.com/join-slack">💬 Slack</a>
<br><br>
<a href="https://github.com/databendlabs/databend/actions/workflows/release.yml"> <img src="https://img.shields.io/github/actions/workflow/status/datafuselabs/databend/release.yml?branch=main" alt="CI Status" /> </a> <img src="https://img.shields.io/badge/Platform-Linux%2C%20macOS%2C%20ARM-green.svg?style=flat" alt="Platform" /> </div> <br> <img src="https://github.com/user-attachments/assets/4c288d5c-9365-44f7-8cde-b2c7ebe15622" alt="databend" width="100%" />💡 Why Databend?
Databend is an open-source enterprise data warehouse built in Rust.
Core capabilities: Analytics, vector search, full-text search, auto schema evolution — unified in one engine.
Agent-ready: Sandbox UDFs for agent logic, SQL for orchestration, transactions for reliability, branching for safe experimentation on production data.
| 📊 Core Engine<br>Analytics, vector search, full-text search, auto schema evolution, transactions. | 🤖 Agent-Ready<br>Sandbox UDF + SQL orchestration. Build and run agents on your enterprise data. |
| 🏢 Enterprise Scale<br>Elastic compute, cloud native. S3/Azure/GCS. | 🌿 Branching<br>Git-like data versioning. Agents safely operate on production snapshots. |
⚡ Quick Start
1. Cloud (Recommended)
Start for free on Databend Cloud — Production-ready in 60 seconds.
2. Local (Python)
Ideal for development and testing:
pip install databend
import databend
ctx = databend.SessionContext()
ctx.sql("SELECT 'Hello, Databend!'").show()
3. Docker
Run the full warehouse locally:
docker run -p 8000:8000 datafuselabs/databend
🤖 Agent-Ready Architecture
Databend's Sandbox UDF enables flexible agent orchestration with a three-layer architecture:
- Control Plane: Resource scheduling, permission validation, sandbox lifecycle management
- Execution Plane (Databend): SQL orchestration, issues requests via Arrow Flight
- Compute Plane (Sandbox Workers): Isolated sandboxes running your agent logic
-- Define your agent logic
CREATE FUNCTION my_agent(input STRING) RETURNS STRING
LANGUAGE python HANDLER = 'run'
AS $$
def run(input):
# Your agent logic: LLM calls, tool use, reasoning...
return response
$$;
-- Orchestrate agents with SQL
SELECT my_agent(question) FROM tasks;
🚀 Use Cases
- AI Agents: Sandbox UDF + SQL orchestration + branching for safe operations
- Analytics & BI: Large-scale SQL analytics — Learn more
- Search & RAG: Vector + full-text search — Learn more
🤝 Community & Support
Contributors are immortalized in the system.contributors table 🏆
📄 License
Apache 2.0 + Elastic 2.0 | Licensing FAQ
<div align="center"> <strong>Enterprise warehouse, agent ready</strong><br> <a href="https://databend.com">🌐 Website</a> • <a href="https://x.com/DatabendLabs">🐦 Twitter</a> </div>