back to home

dmlc / xgboost

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

28,033 stars
8,842 forks
473 issues
C++PythonCuda

AI Architecture Analysis

This repository is indexed by RepoMind. By analyzing dmlc/xgboost in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.

Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.

Embed this Badge

Showcase RepoMind's analysis directly in your repository's README.

[![Analyzed by RepoMind](https://img.shields.io/badge/Analyzed%20by-RepoMind-4F46E5?style=for-the-badge)](https://repomind-ai.vercel.app/repo/dmlc/xgboost)
Preview:Analyzed by RepoMind

Repository Summary (README)

Preview

<img src="https://xgboost.ai/images/logo/xgboost-logo-trimmed.png" width=200/> eXtreme Gradient Boosting

XGBoost-CI Documentation Status GitHub license CRAN Status Badge PyPI version Conda version Optuna Twitter OpenSSF Scorecard Open In Colab

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, Dask, Spark, PySpark) and can solve problems beyond billions of examples.

License

© Contributors, 2021. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page.

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

<a href="https://www.nvidia.com/en-us/" target="_blank"><img src="https://raw.githubusercontent.com/xgboost-ai/xgboost-ai.github.io/master/images/sponsors/nvidia.jpg" alt="NVIDIA" width="72" height="72"></a> <a href="https://www.comet.com/site/?utm_source=xgboost&utm_medium=github&utm_content=readme" target="_blank"><img src="https://cdn.comet.ml/img/notebook_logo.png" height="72"></a> <a href="https://opencollective.com/tomislav1" target="_blank"><img src="https://images.opencollective.com/tomislav1/avatar/256.png" height="72"></a> <a href="https://databento.com/?utm_source=xgboost&utm_medium=sponsor&utm_content=display"><img src="https://raw.githubusercontent.com/xgboost-ai/xgboost-ai.github.io/refs/heads/master/images/sponsors/databento.png" height="72"></a> <a href="https://www.intel.com/" target="_blank"><img src="https://images.opencollective.com/intel-corporation/2fa85c1/logo/256.png" width="72" height="72"></a>

Backers

[Become a backer]

<a href="https://opencollective.com/xgboost#backers" target="_blank"><img src="https://opencollective.com/xgboost/backers.svg?width=890"></a>