back to home

jakevdp / PythonDataScienceHandbook

Python Data Science Handbook: full text in Jupyter Notebooks

46,821 stars
18,734 forks
230 issues
Jupyter NotebookPythonHTML

AI Architecture Analysis

This repository is indexed by RepoMind. By analyzing jakevdp/PythonDataScienceHandbook in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.

Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.

Embed this Badge

Showcase RepoMind's analysis directly in your repository's README.

[![Analyzed by RepoMind](https://img.shields.io/badge/Analyzed%20by-RepoMind-4F46E5?style=for-the-badge)](https://repomind-ai.vercel.app/repo/jakevdp/PythonDataScienceHandbook)
Preview:Analyzed by RepoMind

Repository Summary (README)

Preview

Python Data Science Handbook

Binder Colab

This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks.

cover image

How to Use this Book

About

The book was written and tested with Python 3.5, though other Python versions (including Python 2.7) should work in nearly all cases.

The book introduces the core libraries essential for working with data in Python: particularly IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and related packages. Familiarity with Python as a language is assumed; if you need a quick introduction to the language itself, see the free companion project, A Whirlwind Tour of Python: it's a fast-paced introduction to the Python language aimed at researchers and scientists.

See Index.ipynb for an index of the notebooks available to accompany the text.

Software

The code in the book was tested with Python 3.5, though most (but not all) will also work correctly with Python 2.7 and other older Python versions.

The packages I used to run the code in the book are listed in requirements.txt (Note that some of these exact version numbers may not be available on your platform: you may have to tweak them for your own use). To install the requirements using conda, run the following at the command-line:

$ conda install --file requirements.txt

To create a stand-alone environment named PDSH with Python 3.5 and all the required package versions, run the following:

$ conda create -n PDSH python=3.5 --file requirements.txt

You can read more about using conda environments in the Managing Environments section of the conda documentation.

License

Code

The code in this repository, including all code samples in the notebooks listed above, is released under the MIT license. Read more at the Open Source Initiative.

Text

The text content of the book is released under the CC-BY-NC-ND license. Read more at Creative Commons.