back to home

lutzroeder / netron

Visualizer for neural network, deep learning and machine learning models

32,420 stars
3,074 forks
18 issues
JavaScriptPythonShell

AI Architecture Analysis

This repository is indexed by RepoMind. By analyzing lutzroeder/netron in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.

Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.

Embed this Badge

Showcase RepoMind's analysis directly in your repository's README.

[![Analyzed by RepoMind](https://img.shields.io/badge/Analyzed%20by-RepoMind-4F46E5?style=for-the-badge)](https://repomind-ai.vercel.app/repo/lutzroeder/netron)
Preview:Analyzed by RepoMind

Repository Summary (README)

Preview
<div align="center"> <img width="400px" height="100px" src="https://github.com/lutzroeder/netron/raw/main/.github/logo-light.svg#gh-light-mode-only"> <img width="400px" height="100px" src="https://github.com/lutzroeder/netron/raw/main/.github/logo-dark.svg#gh-dark-mode-only"> </div>

Netron is a viewer for neural network, deep learning and machine learning models.

Netron supports ONNX, TensorFlow Lite, PyTorch, torch.export, ExecuTorch, Core ML, Keras, Caffe, Darknet, TensorFlow.js, Safetensors and NumPy.

Netron has experimental support for TorchScript, MLIR, TensorFlow, OpenVINO, RKNN, ncnn, MNN, PaddlePaddle, GGUF and scikit-learn.

<p align='center'><a href='https://www.lutzroeder.com/ai'><img src='.github/screenshot.png' width='800'></a></p>

Install

Browser: Start the browser version.

macOS: Download the .dmg file or run brew install --cask netron.

Linux: Download the .deb or .rpm file.

Windows: Download the .exe installer or run winget install -s winget netron.

Python: pip install netron, then run netron [FILE] or netron.start('[FILE]').

Models

Sample model files to download or open using the browser version: