back to home

microsoft / nni

An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

14,343 stars
1,852 forks
415 issues
PythonTypeScriptJavaScript

AI Architecture Analysis

This repository is indexed by RepoMind. By analyzing microsoft/nni in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.

Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.

Embed this Badge

Showcase RepoMind's analysis directly in your repository's README.

[![Analyzed by RepoMind](https://img.shields.io/badge/Analyzed%20by-RepoMind-4F46E5?style=for-the-badge)](https://repomind-ai.vercel.app/repo/microsoft/nni)
Preview:Analyzed by RepoMind

Repository Summary (README)

Preview
<div align="center"> <img src="docs/img/nni_logo.png" width="600"/> </div> <br/>

MIT licensed Issues Bugs Pull Requests Version Documentation Status

<img src="docs/img/readme_banner.png" width="100%"/>

NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our official documentation (简体中文版点这里).

What's NEW!  <a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>

Installation

See the NNI installation guide to install from pip, or build from source.

To install the current release:

$ pip install nni

To update NNI to the latest version, add --upgrade flag to the above commands.

NNI capabilities in a glance

<img src="docs/img/overview.svg" width="100%"/> <table> <tbody> <tr align="center" valign="bottom"> <td></td> <td> <b>Hyperparameter Tuning</b> <img src="docs/img/bar.png" /> </td> <td> <b>Neural Architecture Search</b> <img src="docs/img/bar.png" /> </td> <td> <b>Model Compression</b> <img src="docs/img/bar.png" /> </td> </tr> <tr valign="top"> <td align="center" valign="middle"> <b>Algorithms</b> </td> <td> <ul> <li><b>Exhaustive search</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gridsearch_tuner.GridSearchTuner">Grid Search</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.random_tuner.RandomTuner">Random</a></li> </ul> <li><b>Heuristic search</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperopt_tuner.HyperoptTuner">Anneal</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.evolution_tuner.EvolutionTuner">Evolution</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperband_advisor.Hyperband">Hyperband</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.pbt_tuner.PBTTuner">PBT</a></li> </ul> <li><b>Bayesian optimization</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.bohb_advisor.BOHB">BOHB</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.dngo_tuner.DNGOTuner">DNGO</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gp_tuner.GPTuner">GP</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.metis_tuner.MetisTuner">Metis</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.smac_tuner.SMACTuner">SMAC</a></li> <li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.tpe_tuner.TpeTuner">TPE</a></li> </ul> </ul> </td> <td> <ul> <li><b>Multi-trial</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#grid-search-strategy">Grid Search</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#policy-based-rl-strategy">Policy Based RL</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#random-strategy">Random</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#regularized-evolution-strategy">Regularized Evolution</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#tpe-strategy">TPE</a></li> </ul> <li><b>One-shot</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#darts-strategy">DARTS</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#enas-strategy">ENAS</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#fbnet-strategy">FBNet</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#proxylessnas-strategy">ProxylessNAS</a></li> <li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#spos-strategy">SPOS</a></li> </ul> </ul> </td> <td> <ul> <li><b>Pruning</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#level-pruner">Level</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#l1-norm-pruner">L1 Norm</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#taylor-fo-weight-pruner">Taylor FO Weight</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#movement-pruner">Movement</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#agp-pruner">AGP</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#auto-compress-pruner">Auto Compress</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html">More...</a></li> </ul> <li><b>Quantization</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#naive-quantizer">Naive</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#qat-quantizer">QAT</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#lsq-quantizer">LSQ</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#observer-quantizer">Observer</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#dorefa-quantizer">DoReFa</a></li> <li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#bnn-quantizer">BNN</a></li> </ul> </ul> </td> <tr align="center" valign="bottom"> <td></td> <td> <b>Supported Frameworks</b> <img src="docs/img/bar.png" /> </td> <td> <b>Training Services</b> <img src="docs/img/bar.png" /> </td> <td> <b>Tutorials</b> <img src="docs/img/bar.png" /> </td> </tr> <tr valign="top"> <td align="center" valign="middle"> <b>Supports</b> </td> <td> <ul> <li>PyTorch</li> <li>TensorFlow</li> <li>Scikit-learn</li> <li>XGBoost</li> <li>LightGBM</li> <li>MXNet</li> <li>Caffe2</li> <li>More...</li> </ul> </td> <td> <ul> <li><a href="https://nni.readthedocs.io/en/latest/experiment/local.html">Local machine</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/remote.html">Remote SSH servers</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/aml.html">Azure Machine Learning (AML)</a></li> <li><b>Kubernetes Based</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/experiment/openpai.html">OpenAPI</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/kubeflow.html">Kubeflow</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/frameworkcontroller.html">FrameworkController</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/adaptdl.html">AdaptDL</a></li> <li><a href="https://nni.readthedocs.io/en/latest/experiment/paidlc.html">PAI DLC</a></li> </ul> <li><a href="https://nni.readthedocs.io/en/latest/experiment/hybrid.html">Hybrid training services</a></li> </ul> </td> <td> <ul> <li><b>HPO</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_pytorch/main.html">PyTorch</a></li> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_tensorflow/main.html">TensorFlow</a></li> </ul> <li><b>NAS</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/hello_nas.html">Hello NAS</a></li> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/nasbench_as_dataset.html">NAS Benchmarks</a></li> </ul> <li><b>Compression</b></li> <ul> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_quick_start.html">Pruning</a></li> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_speed_up.html">Pruning Speedup</a></li> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_quick_start.html">Quantization</a></li> <li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_speed_up.html">Quantization Speedup</a></li> </ul> </ul> </td> </tbody> </table> <img src="docs/static/img/webui.gif" alt="webui" width="100%"/>

Resources

Contribution guidelines

If you want to contribute to NNI, be sure to review the contribution guidelines, which includes instructions of submitting feedbacks, best coding practices, and code of conduct.

We use GitHub issues to track tracking requests and bugs. Please use NNI Discussion for general questions and new ideas. For questions of specific use cases, please go to Stack Overflow.

Participating discussions via the following IM groups is also welcomed.

GitterWeChat
imageORimage

Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors. We appreciate all contributions from community to make NNI thrive.

<img src="https://img.shields.io/github/contributors-anon/microsoft/nni"/>

<a href="https://github.com/microsoft/nni/graphs/contributors"><img src="https://contrib.rocks/image?repo=microsoft/nni&max=240&columns=18" /></a>

Test status

Essentials

TypeStatus
Fast testBuild Status
Full test - HPOBuild Status
Full test - NASBuild Status
Full test - compressionBuild Status

Training services

TypeStatus
Local - linuxBuild Status
Local - windowsBuild Status
Remote - linux to linuxBuild Status
Remote - windows to windowsBuild Status
OpenPAIBuild Status
FrameworkcontrollerBuild Status
KubeflowBuild Status
HybridBuild Status
AzureMLBuild Status

Related Projects

Targeting at openness and advancing state-of-art technology, Microsoft Research (MSR) had also released few other open source projects.

  • OpenPAI : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
  • FrameworkController : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
  • MMdnn : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
  • SPTAG : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
  • nn-Meter : An accurate inference latency predictor for DNN models on diverse edge devices.

We encourage researchers and students leverage these projects to accelerate the AI development and research.

License

The entire codebase is under MIT license.