pjreddie / darknet
Convolutional Neural Networks
AI Architecture Analysis
This repository is indexed by RepoMind. By analyzing pjreddie/darknet in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.
Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.
Repository Summary (README)
Preview
Darknet
Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.
Discord invite link for for communication and questions: https://discord.gg/zSq8rtW
YOLOv7:
-
paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors: https://arxiv.org/abs/2207.02696
-
source code - Pytorch (use to reproduce results): https://github.com/WongKinYiu/yolov7
Official YOLOv7 is more accurate and faster than YOLOv5 by 120% FPS, than YOLOX by 180% FPS, than Dual-Swin-T by 1200% FPS, than ConvNext by 550% FPS, than SWIN-L by 500% FPS.
YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100, batch=1.
- YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by
+500%FPS faster than SWIN-L Cascade-Mask R-CNN (53.9% AP, 9.2 FPS A100 b=1) - YOLOv7-e6 (55.9% AP, 56 FPS V100 b=1) by
+550%FPS faster than ConvNeXt-XL C-M-RCNN (55.2% AP, 8.6 FPS A100 b=1) - YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by
+120%FPS faster than YOLOv5-X6-r6.1 (55.0% AP, 38 FPS V100 b=1) - YOLOv7-w6 (54.6% AP, 84 FPS V100 b=1) by
+1200%FPS faster than Dual-Swin-T C-M-RCNN (53.6% AP, 6.5 FPS V100 b=1) - YOLOv7x (52.9% AP, 114 FPS V100 b=1) by
+150%FPS faster than PPYOLOE-X (51.9% AP, 45 FPS V100 b=1) - YOLOv7 (51.2% AP, 161 FPS V100 b=1) by
+180%FPS faster than YOLOX-X (51.1% AP, 58 FPS V100 b=1)



Scaled-YOLOv4:
-
paper (CVPR 2021): https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Scaled-YOLOv4_Scaling_Cross_Stage_Partial_Network_CVPR_2021_paper.html
-
source code - Pytorch (use to reproduce results): https://github.com/WongKinYiu/ScaledYOLOv4
-
source code - Darknet: https://github.com/AlexeyAB/darknet
YOLOv4:
-
source code: https://github.com/AlexeyAB/darknet
For more information see the Darknet project website.
<details><summary> <b>Expand</b> </summary>
https://paperswithcode.com/sota/object-detection-on-coco
AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036



Citation
@misc{https://doi.org/10.48550/arxiv.2207.02696,
doi = {10.48550/ARXIV.2207.02696},
url = {https://arxiv.org/abs/2207.02696},
author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
@misc{bochkovskiy2020yolov4,
title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
year={2020},
eprint={2004.10934},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{Wang_2021_CVPR,
author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {13029-13038}
}