ujjwalkarn / Machine-Learning-Tutorials
machine learning and deep learning tutorials, articles and other resources
AI Architecture Analysis
This repository is indexed by RepoMind. By analyzing ujjwalkarn/Machine-Learning-Tutorials in our AI interface, you can instantly generate complete architecture diagrams, visualize control flows, and perform automated security audits across the entire codebase.
Our Agentic Context Augmented Generation (Agentic CAG) engine loads full source files into context, avoiding the fragmentation of traditional RAG systems. Ask questions about the architecture, dependencies, or specific features to see it in action.
Repository Summary (README)
PreviewMachine Learning & Deep Learning Tutorials
-
This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this list.
-
If you want to contribute to this list, please read Contributing Guidelines.
-
Curated list of R tutorials for Data Science, NLP and Machine Learning.
-
Curated list of Python tutorials for Data Science, NLP and Machine Learning.
Contents
- Introduction
- Interview Resources
- Artificial Intelligence
- Genetic Algorithms
- Statistics
- Useful Blogs
- Resources on Quora
- Resources on Kaggle
- Cheat Sheets
- Classification
- Linear Regression
- Logistic Regression
- Model Validation using Resampling
- Deep Learning
- Natural Language Processing
- Computer Vision
- Support Vector Machine
- Reinforcement Learning
- Decision Trees
- Random Forest / Bagging
- Boosting
- Ensembles
- Stacking Models
- VC Dimension
- Bayesian Machine Learning
- Semi Supervised Learning
- Optimizations
- Other Useful Tutorials
Introduction
-
In-depth introduction to machine learning in 15 hours of expert videos
-
A curated list of awesome Machine Learning frameworks, libraries and software
-
A curated list of awesome data visualization libraries and resources.
-
An awesome Data Science repository to learn and apply for real world problems
-
Machine Learning algorithms that you should always have a strong understanding of
-
Difference between Linearly Independent, Orthogonal, and Uncorrelated Variables
-
Twitter's Most Shared #machineLearning Content From The Past 7 Days
Interview Resources
-
41 Essential Machine Learning Interview Questions (with answers)
-
How can a computer science graduate student prepare himself for data scientist interviews?
Artificial Intelligence
-
Programming Community Curated Resources for learning Artificial Intelligence
-
MIT 6.034 Artificial Intelligence Lecture Videos, Complete Course
Genetic Algorithms
<a name="stat" />Statistics
-
Stat Trek Website - A dedicated website to teach yourselves Statistics
-
Learn Statistics Using Python - Learn Statistics using an application-centric programming approach
-
Statistics for Hackers | Slides | @jakevdp - Slides by Jake VanderPlas
-
Online Statistics Book - An Interactive Multimedia Course for Studying Statistics
-
Tutorials
-
OpenIntro Statistics - Free PDF textbook
Useful Blogs
-
Edwin Chen's Blog - A blog about Math, stats, ML, crowdsourcing, data science
-
The Data School Blog - Data science for beginners!
-
ML Wave - A blog for Learning Machine Learning
-
Andrej Karpathy - A blog about Deep Learning and Data Science in general
-
Colah's Blog - Awesome Neural Networks Blog
-
Alex Minnaar's Blog - A blog about Machine Learning and Software Engineering
-
Statistically Significant - Andrew Landgraf's Data Science Blog
-
Simply Statistics - A blog by three biostatistics professors
-
Yanir Seroussi's Blog - A blog about Data Science and beyond
-
fastML - Machine learning made easy
-
Trevor Stephens Blog - Trevor Stephens Personal Page
-
no free hunch | kaggle - The Kaggle Blog about all things Data Science
-
A Quantitative Journey | outlace - learning quantitative applications
-
r4stats - analyze the world of data science, and to help people learn to use R
-
Variance Explained - David Robinson's Blog
-
AI Junkie - a blog about Artificial Intellingence
-
Deep Learning Blog by Tim Dettmers - Making deep learning accessible
-
J Alammar's Blog- Blog posts about Machine Learning and Neural Nets
-
Adam Geitgey - Easiest Introduction to machine learning
-
Ethen's Notebook Collection - Continuously updated machine learning documentations (mainly in Python3). Contents include educational implementation of machine learning algorithms from scratch and open-source library usage
Resources on Quora
Kaggle Competitions WriteUp
Cheat Sheets
<a name="classification" />Classification
<a name="linear" />Linear Regression
-
Multicollinearity and VIF
Logistic Regression
-
Difference between logit and probit models, Logistic Regression Wiki, Probit Model Wiki
-
Pseudo R2 for Logistic Regression, How to calculate, Other Details
Model Validation using Resampling
<a name="cross" />- Cross Validation
-
Overfitting and Cross Validation
Deep Learning
-
A curated list of awesome Deep Learning tutorials, projects and communities
-
Interesting Deep Learning and NLP Projects (Stanford), Website
-
Understanding Natural Language with Deep Neural Networks Using Torch
-
Introduction to Deep Learning Using Python (GitHub), Good Introduction Slides
-
Video Lectures Oxford 2015, Video Lectures Summer School Montreal
-
Neural Machine Translation
-
Deep Learning Frameworks
-
-
Caffe
-
TensorFlow
-
Feed Forward Networks
- Recurrent and LSTM Networks
-
The Unreasonable effectiveness of RNNs, Torch Code, Python Code
-
Long Short Term Memory (LSTM)
-
Gated Recurrent Units (GRU)
-
Time series forecasting with Sequence-to-Sequence (seq2seq) rnn models
-
Restricted Boltzmann Machine
-
Autoencoders: Unsupervised (applies BackProp after setting target = input)
-
Convolutional Neural Networks
-
Network Representation Learning
Natural Language Processing
-
A curated list of speech and natural language processing resources
-
Understanding Natural Language with Deep Neural Networks Using Torch
- Topic Modeling
-
word2vec
-
Text Clustering
-
Text Classification
-
Named Entity Recognitation
-
Kaggle Tutorial Bag of Words and Word vectors, Part 2, Part 3
Computer Vision
<a name="svm" />Support Vector Machine
-
Comparisons
-
Software
-
Kernels
-
Probabilities post SVM
Reinforcement Learning
<a name="dt" />Decision Trees
-
What is entropy and information gain in the context of building decision trees?
-
How do decision tree learning algorithms deal with missing values?
-
Discover structure behind data with decision trees - Grow and plot a decision tree to automatically figure out hidden rules in your data
-
Comparison of Different Algorithms
-
CART
-
CTREE
-
CHAID
-
MARS
-
Probabilistic Decision Trees
Random Forest / Bagging
-
Evaluating Random Forests for Survival Analysis Using Prediction Error Curve
-
Why doesn't Random Forest handle missing values in predictors?
Boosting
-
Gradient Boosting Machine
-
xgboost
-
AdaBoost
-
CatBoost
Ensembles
<a name="stack" />Stacking Models
Vapnik–Chervonenkis Dimension
Bayesian Machine Learning
Semi Supervised Learning
Optimization
-
Mean Variance Portfolio Optimization with R and Quadratic Programming
-
Hyperopt tutorial for Optimizing Neural Networks’ Hyperparameters